What Promises do Nanotubes and Nanowires Hold for Future Nanoelectronics Applications?
Category
Published on
Abstract
This presentation is no longer available
Various low-dimensional materials are currently explored for future electronics applications. The common ground for all these structures is that the surface related impact can no longer be ignored – the common approach applied to predict properties of bulk-type three-dimensional (3D) materials. Relevant surface related effects could be e.g. surface roughness scattering or it could mean that the broken symmetry at the interface causes quantization effects that alter the entire band structure and result in a completely new type of material class. Examples of nano- materials under current extensive study include: nanotubes, nanowires and graphene. While understanding the novel properties of these materials is relevant in itself and does not need any further justification, the stakes are different when nano-materials are discussed for electronics applications.Here we discuss some recent experimental results on carbon nanotube field-effect transistors as well as a contact study on a novel type of silicon nanowire device. The aim is to close the gap between the current state-of-the art understanding of pure materials properties and actual applications. It will be discussed in how far carbon nanotubes are useful for low-power applications [1,2] and how ultimate scaling can be achieved. In the case of silicon nanowires it will be highlighted why extraction of intrinsic properties is still a challenge and how process modules need to be carefully adjusted to the particular challenges posed by this new material class [3].
Bio

Sponsored by
References
- Appenzeller, Y.-M. Lin, J. Knoch, and Ph. Avouris, Phys. Rev. Lett. 93, 196805 (2004).
- J. Appenzeller, Y.-M. Lin, J. Knoch, and Ph. Avouris, IEEE Transactions on Electron Devices 52, 2568 (2005).
- J. Appenzeller, J. Knoch, E. Tutuc, M. Reuter, and S. Guha, IEDM Technical Digest, 555 (2006).
Cite this work
Researchers should cite this work as follows:
Time
Location
EE 170, Purdue University, West Lafayette, IN