Computational Nanoscience
NSE C242 & Phys C203
Spring, 2008

Lecture 9:
Hard Sphere Monte Carlo :
In-Class Simulation
February 19, 2008

Elif Ertekin and Jeffrey C. Grossman



Hard Sphere Liquid

One of the advantages of MC is that it permits to study systems characterized
by non-analytical interaction potentials.

The first application of the Metropolis Monte Carlo method that we will consider
is to a system of classical identical particles of mass m interacting via the so-
called hard-sphere interaction potential:

v(r) =+c 1f r = oand O otherwise

where c is just the “height” of the potential core.

The Metropolis algorithm was first applied to such a system, which is of great
theoretical interest despite its apparent artificiality.

lts treatment by molecular dynamics is rendered complicated by the non-
analyticity of the interaction potential.

MD simulation is possible, but it requires the exact treatment of particle
collisions, which in turn involves some changes of the algorithm (no use of the
Verlet algorithm is possible).
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Hard Sphere Liquid

On the other hand, a Monte Carlo simulation is straightforward. The simplest
way to do it is to use the Metropolis algorithm with single-particle moves.

One simply attempts to move one particle at a time, and update the total
potential energy by counting the number of particles whose radii overlap with
the radius of the particle being moved at the current and proposed new
position.

The acceptance/rejection test is performed as explained previously.

Note that the relevant parameter of the simulation is fc; if the temperature is
very high, then pc—0 and the acceptance becomes large. The system
behaves more and more like a free-particle system, which is expected of any
system at sufficiently high temperature.

On the other hand, as the temperature is lowered, then fc—o, and the

presence of the core becomes more and more important. Moves that would
result in particles overlapping are inevitably rejected.
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Hard Sphere Liquid

Note that, on lowering sufficiently the temperature, any core will become
important enough, and in the limit f—co the system will behave as if the core

were infinitely high, and the density determines all thermodynamic properties.

(Think about marbles -- they cannot penetrate each other.)

kT¢/I/I/l/© C

thermal energy much lower than barrier height -- barrier becomes inpenetrable

* See, e.g., J. P. Hansen and |. R. McDonald, Theory of Simple Liquids, Academic Press (1969).
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Hard Sphere Liquid

Conversely, if c—=0 then the system behaves in the same way at any
temperature, and again the density is the relevant quantity.

. $

thermal energy much larger than barrier height -- particle does not “see” the barrier

* See, e.g., J. P. Hansen and |. R. McDonald, Theory of Simple Liquids, Academic Press (1969).
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Hard Sphere Liquid

At intermediate temperatures, the thermal energy is comparable to the barrier
height. Thermal effects are important here.

thermal energy comparable to barrier height -- system can “play”

* See, e.g., J. P. Hansen and |. R. McDonald, Theory of Simple Liquids, Academic Press (1969).
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Hard Sphere Liquid

One of the most interesting problems in theoretical physics consists of
determining whether the hard-sphere system, which lacks a transition
comparable to liquid-gas due to the absence of attractive forces, can
nonetheless display a melting-freezing transition at sufficiently low
temperatures, upon varying the density.

This problem cannot be tackled convincingly analytically, due to the

discontinuity of the potential, particularly in the limit c—o, and arguably
represents the earliest success of computational many-body physics.*
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Hard Sphere Liquid

Ok, let’'s do a few MC simulations.

We’'ll use the code “HSMC” (Hard-Sphere Monte Carlo), which yet again has
been given an absolutely stupendous web interface on the NanoHUB.

WEe'll need to enter some input information:

« The dimension for your simulation

* The number of particles

 The density

« The scaled temperature (kT/c)

« The maximum displacement of a single particle in Metropolis

« The total length of the simulation (1 sweep means that a move is
attempted for all particles).

Output is simpler (or less) than in MD since the momentum/velocity part is
gone and there is no temperature monitoring.
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Hard Sphere Liquid

Let’s do the following here in class:
We will start in the low temperature limit.

Start with a system in 2 or 3 dimensions, 64 particles, a scaled temperature of
0.05 and a density of 0.5 -- is this a high or low density??

Does the temperature of 0.05 correspond to a high or low potential barrier?

Now observe how the pair distribution functions change with density? What
can we say about them? Can you find an ordering transition? What might be
the order parameter for the transition?

What happens to the transition when we go to higher temperature?
Does the transition exist in 1 or 2 dimensional systems?

WARNING: For each of your simulations, make sure your choice for (a)
the number of metropolis sweeps and (b) the metropolis step size are
reasonable! The system should be equilibrated by the end, and you
should have reasonable acceptance ratios whenever possible.
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from http://www.physics.emory.edu/~weeks/idl/gofr.html

r

‘
What can you tell about the short-range order? Long-range order?
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In Closing ...

The hard sphere system, although not new by any means, is still the subject of research.

For example, it has been used recently to explore the nature of the glass transition.

na«tur e International weekly journal of science

News and Views

Glass transition: Hard knock for thermodynamics

Salvatore Torquato

It was once thought that relatively few materials could be prepared as amorphous (or
disordered) solids. It is now widely believed that the amorphous state is a universal

property of condensed matter, whether ceramic, polymeric or metallict. The amorphous
solid known as a 'glass' can be achieved by quenching (cooling) a liquid sufficiently
rapidly to below its glass transition temperature, Tg, to avoid crystallization (Fig. 1).

Roughly speaking, a glass is a material that is out of equilibrium, having the disordered
molecular structure of a liquid and the rigidity of a solid. But the underlying physics of
the glass transition remains one of the most fascinating open questions in materials
science and condensed-matter physics. A hotly debated issue is whether the glass
transition involves an underlying thermodynamic (static) or kinetic (dynamic) phase

transition. On page 550 of this issue, Santen and Krauth? provide further evidence that
the glass transition is not thermodynamic in origin.
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In Closing ...

The hard sphere system, although not new by any means, is still the subject of research.

For example, it has been used recently to explore the nature of the glass transition.
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An underlying thermodynamic phase transition would be reflected in a discontinuous
change in certain thermodynamic properties in crossing this density. In doing these
calculations, one must ensure that all of the phase space is sampled without bias (that
is, sampling is ergodic). But standard Monte Carlo techniques are known to be
non-ergodic when the dynamics slow down near phase transitions. To circumvent this
problem, Santen and Krauth use a 'cluster' Monte Carlo algorithm — a method originally

introduced to study so-called spin systems near their critical pointsg-ﬂ. In particular, by
a non-local swapping of large clusters of disks, they avoid the problems that
conventional Monte Carlo methods have near critical points and find no evidence for a
thermodynamic glass transition. Although the specific case studied here does not settle
the issue once and for all (for example, other realistic models for glass formation might
behave differently), it is another piece of evidence that adherents of the thermodynamic
phase-transition theory will find difficult to discount.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley



