
Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Computational Nanoscience
NSE C242 & Phys C203

Spring, 2008

Lecture 10:
Beyond Monte Carlo

February 21, 2008

Elif Ertekin and Jeffrey C. Grossman

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Today’s lecture (… is schizophrenic)

• … will consist of a smattering of topics as we conclude
our discussion of pure Monte Carlo and move on to
phase transitions next week.

• We will discuss some of the common pitfalls of Monte
Carlo methods

• And then briefly review Grand Canonical Monte Carlo
• And on to Kinetic Monte Carlo as a way of bringing

time back into our model
• Time-permitting, we will discuss the art of random

number generation.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Pitfalls of Monte Carlo

Most of the considerations that are pertinent in determining a good initial
configuration in Molecular Dynamics also apply to Monte Carlo.

In MD, one aims at avoiding an initial configuration with particles too close
to one another, as this results in large accelerations, and consequently
in a longer time required for the system to “settle down”.

The physical analogy is that the system is initially not in thermal equilibrium
with the reservoir at the selected temperature, and must be allowed
enough time to relax thermally toward the final equilibrium state.

Thus, it is usually necessary to discard from the configurational ensemble
the first configurations generated by the Metropolis random walk, until it
can be established that the system has reached thermal equilibrium.

Choosing the initial configuration …

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Generally speaking, one can expect a higher acceptance if one particle at a
time is displaced.

Consider the following simple argument: let the probability of accepting the
move of the first particle be η1, the probability of accepting the move of the
second particle be η2 and so on.

Suppose for simplicity that η1 = η2 = … ηN = 0.5. Then single-particle moves
would be accepted roughly half of the time.

On the other hand, if all particles are moved at once it is easy to see that
the probability of accepting the “global move” will be the product η1 x η2 x …
ηN ≈ 2-N << 1.

Note, though, that at low temperatures, or in the vicinity of a phase
transition, single-particle moves become increasingly inefficient and the
case for “global” configurational updates becomes stronger.

Single vs. Global Moves …

Pitfalls of Monte Carlo

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Roughly speaking, the problem arises as the system tends to behave, in the
vicinity of a phase transition, more and more “as a whole”, i.e., its different
parts are highly correlated as the system approaches an ordered state
(such as in the melting-freezing transition).

In more precise language, the characteristic correlation length of the system
diverges at a critical point.

As a result, it becomes very easy for the system to be locked into a so-
called metastable state, or a state from which the system eventually
migrates but in an increasingly larger amount of time, particularly as the
system size is increased.

Often, little can be done to overcome such a problem. Sometimes, however,
it is possible to overcome, at least partially, this difficulty by attempting to
perform global moves, allowing the system to change its state radically
(more on this in the context of the Ising model).

Critical Slowing Down … more on this later

Pitfalls of Monte Carlo

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Statistically Correlated Configurations

Particularly in Markov simulations, it is quite possible that successive
configurations are not necessarily independent of each other (temporal
correlations).

A good Monte Carlo simulation must use a large enough number of
configurations so that the total number of configurations is larger than a few
“characteristic time” scales.

This is more of a problem at low temperatures (since most of the proposed
configurations are rejected), where it might take a large number of Monte
Carlo steps to get statistically independent configurations.

Pitfalls of Monte Carlo

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Beyond Metropolis to Grand Canonical Monte Carlo
• It is possible to conduct Monte Carlo simulations in the Grand Canonical Ensemble,

where (µ,P,T) are held fixed.
• Note how the number of particles in the system is now free to vary
• Why would one want to do this?

procedure is the same as before:

(1) Find the partition function for the
system.

- the “system” is now a coupled system

(2) Determine transition rules are
consistent with it - detailed balance.

after M. Dijkstra,
http://www.phys.uu.nl/~mdijkstr:

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Beyond Metropolis to Grand Canonical Monte Carlo

after M. Dijkstra, http://www.phys.uu.nl/~mdijkstr:

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Beyond Metropolis to Grand Canonical Monte Carlo
formation of a graphene cap on a spherical catalyst

µ = -5 eV; T = 1000K

µ = -5 eV; T = 2000K

µ = -5 eV; T = 3000K

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Kinetic Monte Carlo - Motivation
We said earlier that Monte Carlo methods have no intrinsic time

scale, but instead represent how a given system samples
different configurations at equilibrium.

The Kinetic Monte Carlo method is an extension of basic Monte
Carlo that enables one to study the evolution of a system in
time.

It enables us to model island growth, thin film growth, self-
assembly, physical and chemical vapor deposition processes,
etc.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Transition State Theory

!

"
AB

= # exp $%E
AB[]

"
BA

= # exp $%E
BA[]

The transition rates of the system
from state A to state B, and vice-
versa, are given by:

Γ is the transition rate, ν denotes some attempt frequency, and E gives the
height of the barrier for the transition.

Notice that pure Monte Carlo simulations take no note of the barriers, but are
only concerned with the relative energies of the start and end points.

This is entirely consistent; the relative rates of transition from A to B and from
B to A are still correct in Monte Carlo. We need not know the “barrier height”
for detailed balance. But, we have no true sense of time, however, and no
way to relate transition rates across different types of processes.

EAB EBA

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Kinetic Monte Carlo Algorithm

1. Identify all the relevant processes for your system.

- This is not always easy!

- Many processes are usually present, but you need to select the important
ones and leave the others aside.

- Too many processes in your simulation will mean high computational cost

2. Determine (guess, estimate, calculate …) the activation barrier for each
process. Use TST to assign a rate to each process. We’ll denote by ri the
rate of the ith process.

3. The total rate at which “anything” happens is then given by

4. Use R to choose from a poisson distribution the time at which the next event
happens (first random number).

!

R = r
i

i

"

BKL Algorithm (Bortz, Kalos, Lebowitz 1975)

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Kinetic Monte Carlo Algorithm

5. Choose which event actually happens (second random number).

!

pi =
ri
R

How does this help, over standard Monte Carlo?

First of all, we now have a clock built in to the simulation.

Secondly, we are actually doing something every step (compare to Monte Carlo,
where some portion of the steps are rejected, especially at low temperature). Of
course, this is somewhat offset by the fact that at the next step, the system might
flip back to where it started.

!

m =
1

T
m t()dt

0

T

"

Now, when computing averages, the
configurations must be weighted by
the time intervals.m

tt1 t2t0

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Poisson Distribution for Time Intervals
The probability distribution governing when the next event will happen is

a poisson distribution, which we will describe here.
Imagine that time passes in discrete intervals Δ. The probability that

nothing has happened after n such intervals is given by

!

Q
n

= 1" R#()
n

= 1"
Rt

n

$

%
&

'

(
)

n

In the limit of continuous time (Δ approaches 0 or n becomes infinite):

!

Q t() = exp "Rt()

!

P t() =1" exp "Rt() = p t()dt
0

t

#

!

p t() = R exp "Rt()

Then the probability that something has happened between time 0 and t is:

Which means that the relevant probability distribution for events occuring
is given by

This is called a poisson distribution. It is memoryless, and is the same
distribution that governs things such as when your lightbulb will burn out.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Example of KMC - Vacancy Mediated Diffusion
Diffusion in solids is a complex, thermally activated process which can occur through a
variety of mechanisms.

We will use KMC to consider vacancy mediated diffusion, in which a vacancy
undergoes a “random walk” through a discrete atomic lattice.

The vacancy moves by swapping locations with neighboring atoms.

If we choose an atom at random to “trace”, and keep track of its position over the
course of the KMC simulation, we can estimate things like diffusion coefficients.

From some remarkably general considerations (that I will not describe here), we can
relate mean-field quantities such as diffusion coefficients to discrete systems

!

J = "D•#C ,
$C

$t
= D#2C, probability distributions governing random walks % 2dDt = R

2

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

1. Identify all the relevant processes for your system.

Example of KMC - Vacancy Mediated Diffusion

• p1, p2, p3, p4 have barrier EN

• p1, p2, p3, p4 have barrier ED

8 “obvious” processes:

What are other possible processes?

- two vacancies come into contact with some binding energy

- atoms swap locations with each other

- atom adsorption from gas, desorption to a gas (vacancy destruction or creation)

- etc, etc but we will ignore these

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

2. Determine (guess, estimate, calculate …) the activation barrier for each
process. Use TST to assign a rate to each process. We’ll denote by ri the
rate of the ith process.

Example of KMC - Vacancy Mediated Diffusion

EN

ED

What are some ways to determine the transition barriers?

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

3. The total rate at which “anything” happens is then given by

Example of KMC - Vacancy Mediated Diffusion

!

R = r
i

i

" = 4# exp $%E
N[] + exp $%E

D[]()

4. Use R to choose from a poisson distribution the time at which the next
event happens (first random number picked here).

!

p t() = R exp "Rt()

probability distribution for
the next event to occur

p(t)

t
How does one choose a number according to a poisson
distribution? We want to identify a function f(x) so that
computing f(xi)=ti generates ti according to p(t) (where xi is a
random number uniformly distributed between 0 and 1.

!

t
i
= "

1

R
ln x

i

!

}

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Example of KMC - Vacancy Mediated Diffusion

5. Choose which event actually happens (second random number) from
the rate catalog .

!

pN1 =
rN1

R
=

exp "#EN[]
4 exp "#EN[] + exp "#ED[]()

pN2 =
rN2

R
=

exp "#EN[]
4 exp "#EN[] + exp "#ED[]()

pN3 =
rN3

R
=

exp "#EN[]
4 exp "#EN[] + exp "#ED[]()

pN4 =
rN4

R
=

exp "#EN[]
4 exp "#EN[] + exp "#ED[]()

pD1 =
rD1

R
=

exp "#EN[]
4 exp "#EN[] + exp "#ED[]()

pD2 =
rD2

R
=

exp "#EN[]
4 exp "#EN[] + exp "#ED[]()

pD3 =
rD3

R
=

exp "#EN[]
4 exp "#EN[] + exp "#ED[]()

pD4 =
rD4

R
=

exp "#EN[]
4 exp "#EN[] + exp "#ED[]()

Advance the clock, update the
configuration, and record whatever
properties you are interested in for the
new configuration.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Example of KMC - Vacancy Mediated Diffusion

Repeat this process as long as reasonable. At the end of the day, you
will have something that looks like:

Cnn

………

C2Δt1 + Δt22

C1Δt11

ConfigurationTimeStep

!

"t
i

i=1

n

#

From this, we can
compute properties of
interest such as diffusion
coefficients.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Kinetic Monte Carlo vs. MD

MD: choose a potential, choose boundary conditions, and propagate the
classical equations of motion forward in time. If potential is accurate, if electron-
phonon coupling (non Born-Oppenheimer behavior) is negligible, then the
dynamical evolution will be a very accurate representation of the real physical
system.

Limitation is the time steps required by accurate integration (10-15 s to resolve
atomic vibrations), generally limiting the total simulation time to microseconds.

KMC: attempts to overcome this by exploiting that the long-time dynamics of a
system typically consist of jumps from one configuration to another.

In KMC, we do not follow trajectories, but treat the state transitions directly.
Time scales are seconds or longer (in fact, achievable time varies with
simulation temperature by orders of magnitude).

A key feature of KMC is that the configuration “sits” in some local minimum of
configuration space for some time. It then transitions out of that state and into
others with the transition rates related to the barriers. It does not matter how the
system got into the current state in the first place - it is memoryless, and the
process is Markovian.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

What about the computational time in KMC?

Limited by searching through the rate catalog for the process
that has been selected, so for the most elementary searches,
KMC computational time will scale linearly with the number of
processes. More sophisticated search algorithms can give
log(M) scaling.

Why is KMC not exact?

- Inexact barriers. That is, inexactly computed.

- In fact, the TST rate is not exact (harmonic approximation to
the minima & saddle point) but are pretty good (within 10-20%).

- Incomplete rate catalog. This is arguably the biggest problem
in KMC. Our intuition cannot often capture surprising reaction
pathways, and we neglect relevant physics.

Kinetic Monte Carlo vs. MD

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Example: Adatom surface diffusion on Al(100)

• Until 1990, diffusion of an adatom on an fcc(100) surface was though to
occur by a simple hopping from one site to another

• Feibelman (1990) discovered using density functional calculations that
the primary diffusion pathway is quite different

• This new mechanism has now been observed for Pt(100) and Ir(100)
surfaces via field ion microscopy

After Voter, A.F. Radiation Effects in Solids, 2005:

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Random Number Generation Primer

Generating random numbers effectively and efficiently is a critical
part of a good Monte Carlo simulation.

Monte Carlo simulations are subject to systematic errors due to
poor random number generation.

Random number generation is still and avid research area - both in
developing algorithms for generation and in developing ways to
test your sequence for randomness.

For example, a recent concern related to the use of random
number generators on massively parallel computers. The
sequences on all processors must be distinct and uncorrelated.

Desired characteristic for random number algorithms: uncorrelated,
uniform, of extremely long period.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Random Number Generation Primer

No computer can in fact generate a sequence of true random numbers. The
computer uses an algorithm (that is in fact deterministic) to select a number,
that’s why they are often called “pseudorandom” numbers.

A random number generator is typically a routine that produces a very long
sequence of pseudorandom numbers; this sequence is, strictly speaking,
periodic.

This means that, after drawing a sufficiently large number of pseudorandom
numbers, the sequence will start and numbers will repeat themselves.

In principle, the fact that a pseudorandom number generator repeats itself is an
obviously undesirable feature.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Random Number Generation Primer

However, typical generators have large periods, such as 232 or so, which
normally make them suitable to perform reliably even the most demanding
Monte Carlo calculations.

The sequence can be started at any point by the selection of an arbitrary initial
integer number called seed.

A choice of the seed is as good as any other, it is just a matter of determining
where in the “chain” one wants to start, all starting points being obviously
equivalent.

A random number generator initialized with the same seed will always produce
the same random sequence.

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Random Number Generation Primer

xi = MOD{(xi-1*a+b),m}

The period of this type of generator is limited by m (often chosen to be the
largest prime number that can be represented in a given number of bits).

Even though it is widely used, the linear congruential generator can give
very “non-random” results.

commonly used algorithms:

Shift register algorithms

Algorithms based on Fibonacci sequences

Random Number Generation - Primer

xn = xn-p XOR xn-q

Start with a table of random numbers and generate a new random
number by combining two existing numbers from the table.

Has been demonstrated that the best choices for (p,q) are Mersine
primes satisfying p2 + q2 + 1 = prime.

Linear congruential method - most common

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Random Number Generation Primer

Uniformity Test
- the numbers should be uniformly distributed over the range of
selection

Overlapping M-Tuple Test
- check statistical properties for the number of times M-tuples of
digits appear in the sequence of random numbers

“Parking Lot” Test
- Plot points in an m-dimensional space where the m-
coordinates come from m-successive calls to the generator.
Look for patterns.

commonly used approaches to testing your algorithm:

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Random Number Generation Primer

• Example of arguably the lousiest random number generator in history
of computers: RANDU

• It is a linear congruential PRNG used since the 1960’s into the early
1970’s.

• Subject this kernel to the “parking lot” test:

!

V j+1 = (65539V j)mod2
31

From the Wikipedia
entry on RANDU

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Random Number Generation Primer
• “True Random Number Generators” are becoming more in

vogue these days
• See, e.g., www.random.org/integers and you can test one out

for yourself
• Extracts randomness from physical phenomena (radiation

sources, atmospheric noise) and introduces it into a computer
• These are aperiodic and undeterministic -- true random

numbers! -- but their efficiency is very poor

