

Gerhard KlimeckNetwork for Computational Nanotechnology School of Electrical and Computer Engineering Purdue University

> Purdue Math / SIAM Seminar SeriesFebruary 7th, 2008

Gerhard Klimeck

•Network for Computational Nanotechnology (NCN)

•NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

»Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics

»Basic algorithms

»Scaling to 23,000 processors

•OMEN plans

•Algorithm work needed

Acknowledgements

•NEMO 3-D – development at Purdue

»Faisal Saied, Sunhee Lee, Hoon Ryu, Maxim Naumov, Hansang Bae, Steve Clark

»Rajib Rahman, Neerav Kharche

•NEMO 1-D

»Development team at Texas Instruments and JPL

»Benchmarking at Purdue: Steve Clark and Hansang Bae

•OMEN

»OMEN proposal team

•Alternative Algorithms

»Darve – Stanford

»Cauley – Purdue

»Sameh - Purdue

Overcoming barriers to quantum mechanics simulations in physics, chemistry, biology, and materials to migrate nano-science to nano-technology.

Example: NEMO3D – Nanoelectronic Modeling

NEMO 3-D Technical Approach

Problem:

Nanoscale device simulation requirements:

- Cannot use bulk / jellium descriptions, need description of the material atom by atom => use pseudo-potential or local orbitals
- Consider finite extend, not infinitely periodic => local orbital approach
- Need to include about one million atoms. => need massively parallel computers
- The design space is huge: choice of materials, compositions, doping, size, shape. => need a design tool

Approach:

- Use local orbital description for individual atoms in arbitrary crystal / bonding configuration
	- Use s, p, and d orbitals.
	- Use genetic algorithm to determine material parameter fitting
- Compute mechanical strain in the system.
- Develop efficient parallel algorithms to generate eigenvalues/vectors of very large matrices
- Develop prototype for a graphical user interface based nanoelectronic modeling tool (NEMO-3D)

NCN Science Impact through HPC NEMO 3-D

- 52 million atom electronic structure (101nm)³.
- Quantum dots, nanowires, quantum computing…

NCN Science Impact through HPC NEMO 3-D

Proof of Concept Extraction of Targeted Interior Eigenstates

an NCN project mano

Proof of Concept Extraction of Targeted Interior Eigenstates

FCRP

Unique and targeted eigenstates of correct symmetry can be computed in all electronic computational domains **739**

Vertically Coupled Seven-Dot Molecule Identical dots

PURDUE Gerhard Klimeck

Vertically Coupled Seven-Dot Molecule Strain asymmetry with identical dots

PURDUE Gerhard Klimeck **Vertically coupled QD molecule composed of nonidentical dots**

an NCN project

Gerhard Klimeck

nanol

162.25 nm 162.25 nm

Gerhard Klimeck

Vertically Coupled Seven-Dot Molecule Growth asymmetry => non-identical dots

Vertically Coupled Seven-Dot Molecule Growth asymmetry => non-identical dots

- Application in lasers
- Strain: 44.7 Ma
- Electronics: 6.1 Ma6.1 Ma
- 7 non-identical dots, **WITH** strain
	- => competing asymmetries
- Large dot->top, strain->bottom
- p-like states mixed into band. 84.8 nm

How to Treat Disordered Systems?

• In and Ga atoms are randomly placed

non

- Real alloys are spatially disordered
- Different samples "look" different => statistical properties

Typical approach: VCA

- average over In and Ga
- create an "average atom" "InGa"

What do interfaces REALLY mean now?

In/Ga atoms are randomly placed

- Interface is rugged in 3-D
- => Confinement changes!
- Material not homogeneous => fluctuations in material!
- VCA ignores all that!

Inhomogeneous Broadening due to Alloy Disorder

Problem:

- Cations are randomly distributed in alloy.
- Does alloy disorder limit electronic structure uniformity for dot ensembles?
- Requires atomistic simulation tool. **Approach:**
- Simulate a statistical ensemble of dots.
	- Identical in size and shape
	- Different only in cation ordering.

In_{0.6}Ga_{0.4}As Lens Shaped Dot In and Ga atoms are randomly distributed Inhomogeneous Broadening? Diameter=30nm,Height=5nm, GaAs embedded $~1,000,000$ Atom Simulation, sp3s^{*} basis

Measured Γ=34.6 meV (R. Leon, PRB, **58**, R4262)

Inhomogeneous Broadening due to Alloy Disorder >1,000 quantum dot ensemble

Problem:

- Cations are randomly distributed in alloy.
- Does alloy disorder limit electronic structure uniformity for dot ensembles?
- Requires atomistic simulation tool. **Approach:**
- Simulate a statistical ensemble of dots.
	- Identical in size and shape
	- Different only in cation ordering.

Gerhard Klimeck**In_{0.6}Ga_{0.4}As** Lens Shaped Dot In and Ga atoms are randomly distributed Inhomogeneous Broadening? Diameter=30nm,Height=5nm, GaAs embedded $~1,000,000$ Atom Simulation, sp3s^{*} basis

Parallelization and Methods

- •Divide Simulation domain into slices.
- • Communication only from one slice to the next (nearest neighbor)
- •Communication overhead across the surfaces[•] of the slices.
- • Limiting operation: complex sparse matrix-vector multiplication
- • Enable Hamiltonian storage or re-computation on the fly.

- •Strain computed in open source CG algorithm
- • Electronic structure needs eigenvalues and eigenvectors. Matrix is Hermitian Released NEMO 3-D methods:
	- Standard 2-pass Lanczos
	- PARPACK about 10x slower
	- Folded Spectrum Method (Zunger), also typically slower than Lanczos
	- Block Lanczos
	- •Tracemin

Detailed Scaling Benchmarks Recomputed System Matrix

- IBM Blue Gene L RPI
- June 2007 #7 / TOP500

• Almost perfect scaling !

Detailed Scaling Benchmarks Recomputed System Matrix

- IBM Blue Gene L RPI
- June 2007 #7 / TOP500
- Cray XT3/4 Oak Ridge Natl. Lab
- June 2007 #2 / TOP500

Detailed Scaling Benchmarks Cray XT3/4 Recomputed System Matrix vs Stored System Matrix

• Store the Sparse Matrix H for Hx=y

• Recompute the Sparse Matrix H for Hx=y

8 million atoms - Scaling up to 8,192 cores TOP500: #2, #7, #8, #30, #46

- Clusters have enough memory can store the Hamiltonian => speed
- Blue Gene small memory need to recompute matrix on the fly
- XT3/4 best for NEMO3D

8 million atoms - Scaling up to 8,192 cores TOP500: #2, #7

- Clusters have enough memory can store the Hamiltonian => speed
- Blue Gene small memory need to recompute matrix on the fly
- XT3/4 best for NEMO3D

•Network for Computational Nanotechnology (NCN) •NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

»Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics »Basic algorithms

»Scaling to 23,000 processors

•OMEN plans

•Algorithm work needed

Resonant Tunneling Diode

7 ml

7 ml

nid

nid

50 nm 1e18 InGaAs

AlAs

InGaAs

Conduction band diagrams for different voltages and the resulting current flow.

Gerhard Klimeck

z

Algorithm Overview

Have three levels of possible parallelization:

- **Loop over bias points coarse grain**
- **Loop over momentum points medium grain**
- **Loop over energy points fine grain**

Dispersion in the Transverse Direction Electron vs. Hole Subbands

 \mathbb{R}^{an} NCN project

nanoH

Parallelization of Bias Points

• Master-Slave approach

» master only distributes and gathers individual bias points

- This I-V has 70 bias points:
	- » Good scaling up to 15 CPUs, Strong steps at 36 and 24 CPUs / Load imbalance
	- Getbard Gren Cork \checkmark Max speed-up: 21 at 24 CPU 87% efficiency 30 at 36 CPU 83% efficiency 32 at 64 CPU 50% efficiency

Parallelization of Momentum Integral

- •K-grid has 21 points:
- •Even bin distribution in one communication step.
- •Results:
	- »Good scaling up to 8 CPUs, Strong steps at 11 and 21 CPUs
		- \checkmark Load imbalance
		-

VMax speed-up: 10 at 11 CPU 91% efficiency 18 at 21 CPU 86% efficiency VLarge CPU Speed-up: 18 at 64 CPU 28% efficiency

- Adaptive mesh refinement starting from 50-200 nodes
- Refinement ends on 2 nodes at a time for 1 resonance
- Energy grid is at the lowest level -> communication overhead
- Maximum speed-up: 7.5 at 10 CPU 75% efficiency

15 at 40 CPU 38%

efficiency

URLUUE Gerhard Klimeck
• Large CPU Speed-up: 13 at 64 CPU 20% •

Gerhard Klimeck

PURDUE

Parallelization of One Level

- Parallelization on 64 CPUs is unsatisfactory in all one level algorithms!
	- » For this particular benchmark typical for electron RTD computation
- How about parallelization on multiple levels?

Parallelization of Multiple Levels

- Parallelization on 64 CPUs is unsatisfactory in all one level algorithms!
- How about parallelization on multiple levels?

» 4 possibilities: I-K, I-E, K-E, I-K-E all of them implemented

» Try to maximize number of CPUs in the coarser grids**PURDUE** Gerhard Klimeck

Parallelization of Bias and Momentum

• Still see some load imbalance problems

• Maximum speed-up: 40 at 43 CPU 93% efficiency 46 at 57 CPU 81% efficiency • Large CPU speed-up: 45 at 64 CPU 70%

Gerhard Klime Ek • Compared to I parallelism only:

efficiency

Parallelization of Bias and Energy

• Much fewer load imbalance problems

- Maximum speed-up: 43 at 58 CPU 74% efficiency
- Large CPU speed-up: 42 at 64 CPU 65% efficiency
- $\overline{3}$ I₂ 11 CPU₁ \overline{c} 3 7 8 9 10 11 12 13 14 15 16 6

RLarge Ce Phat speed-up: 32 at 64 CPU 50% • Compared to I parallelism only:

NEMO 1-D Parallelization Conclusions year 2002

- Efficient parallelization for realistic RTD simulations is non-trivial.
- Parallelization on multiple levels:
	- » Flexibility to tackle different problems
	- » Enabled simulation of fully charge self-consistent simulations
		- $\sqrt{\frac{1}{10}}$ Reduced compute time from 14 days to 6 hours. **YEAR 2002 – 64 node cluster**
- Beowulf clusters are affordable and useful for computational electronics.

Electron transport in RTDs: Density of States and Transmission

Gerhard Klimeck

PURDUE

- Density of States: Shows the spatial and energetic "location" of possible states
- Transmission:shows spikes where the DOS is strong in the central RTD
- Small effective mass:large state separation
- Large effective mass: "heavy" electrons
	- » small state separation
	- » Sharp peaks strong confinement weak coupling to outside
	- » Deep background/peak ratio: 10¹³ strong confinement

weak coupling to outside

Hole transport in RTDs: an NCN project **Simplified Density of States and Transmission**

manc

Hole Transport in RTDs sp3s* full band model

• Transmission coefficient at k_x=0

nano

Gerhard Klimeck • $\,$ sp 3 s $\,$ represents all bands simultaneously. Can identify LH, HH, and SO features

Dispersion in the Transverse Direction Electron vs. Hole Subbands

nanoHUB

an NCN project

NEMO 1-D on ORLN Cray XT3/4 Almost Perfect scaling to 23,000 cores!

 $I(V) \propto 2\pi \int kdk \int dET(E,k) \big(f_L(E,V)-f_R(E,V)\big)$

•Network for Computational Nanotechnology (NCN) •NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

»Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics

»Basic algorithms

»Scaling to 23,000 processors

•OMEN plans

•Algorithm work needed

Gerhard Klimeck

PURDUE

Moving towards the peta-scale

•Network for Computational Nanotechnology (NCN) •NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

»Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics

»Basic algorithms

»Scaling to 23,000 processors

•OMEN plans

•Algorithm work needed

What is the NEGF method?

- Non Equilibrium Green's Function method
- 1960s: Developed by the theoretical physicists
- 1990: Vision to use the NEGF as a quantum mechanical method to model nanodevices
- 2000s: Considered state-of-the-art modeling method to predict performance of emerging nanodevices
- Why work on Computational Algorithms?

A ||x| = |b Typical matrix equation

Find column vector x

Gerhard Klimeck

PURDUE

Quasi 1D Transport Devices

Organic Molecules / Carbon Nanotube

Biomolecule

PURDUE

Gerhard Klimeck

- • Most devices can be decomposed into a predominant transport direction
- • Device structures are very different but underlying equations and computational algorithms are very similar
- => Algorithms can be generalized for many configurations and materials
- => choose basis wisely
- => compute Poisson smartly
- => design NEGF algorithms independent of geometry and basis-

Underlying equations & interpretation

Density of States $=$ $-\frac{1}{\pi}Im[G^{r}(x, x, E)]$ Electron Density $= -iG^<(x, x, E)$ Current Density α $G^{<}(x, x+1, E)$

Mathematical problem & matrix structure

 \bullet The **block tridiagonal system** is solved at each energy to obtain electron density (diagonal elements of G<)

Current approach: Recursive algorithm

of grid points = N_x N_y

- What are we solving for? Electron Density – Diagonal elements of G<
- Algorithmic flow based on Dyson's equation
	- » Recursive Green's function approach
	- »S al algorithm at each energy
	- » Highly stable
- Block Block $\;$ Size = N_x; Number of blocks = N_y
- Each step involves a matrix inversion
- Operation Count ~ 6 N_x3 N_y
- Memory \sim 4 N $_{\rm x}^{\rm 2}$ N $_{\rm y}$
- We solve for the diagonal blocks of G[<] but we need only the diagonal elements
- **Jugi** Appl. Phys., v. 91, p. 2343-2354 (2002)
Jugi Cerhard Klimeck • Quantum Mechanical Modeling of …,

Grand Challenges: Nanowire and FinFETs

 $D = 1.5 - 3$ nm Nanowire
 $D = 10 - 30$ nm FinFET

- Matrix size of each layer (# of orbitals) ~ 2000+ **(N_x>2000)** $(N_y > 700)$ ^(N_y>700)
- Number of layers ~ 700 **(Ny>700)**

an NCN project

• Best Available method - RGF:

» Operation Count $\qquad \sim 6$ N_x³ N_y » Memory ~ 4 $N_x^2 N_y$

• **Memory ~ 100 GB Computational Time ~ 60,000+ hours**

<u>κውን የተለያደለቀ አይደ</u>ተመል Kays to solve these systems?

N_x>200,000
(N_x>2000)

Algorithms development at NCN

NEGF device modelers

Active**Collaboration**

Applied Mathematicians

- •Benchmark algorithm RGF
	- » Operation count $\sim O(N_x^3 N_y)$
	- » Memory
	- » Fundamentally serial

•New algorithms to solve the NEGF equations have been developed:

~ $O(N_x^2N_y)$

- » PDIV Parallel Divide and Conquer Approach (SRC funded), Stephen Cauley & Jitesh Jain, Balakrishnan-Koh group, Purdue
	- \checkmark Operation count $\sim O(N_x^3N_y/D + N_x^3log_2D)$ reduced by D, with factor
	- \checkmark Memory

Memory $\sim O(N_x^2N_y/D + N_x^2 D)$ reduced by D, with factor

- \checkmark Parallel, scales almost linearly with CPUs
- » FIND Nested Dissection method (NCN funded), Song Li, Darve group, Stanford
- **GerharchKlimeck** \checkmark Operation count \checkmark o(N_x² N_y) reduced by N_x

Divide and Conquer Approach

• Novel divide and conquer approach based on the matrix inversion lemma

 $D = 4$

Corner Blocks

- •Divide the original matrix into D sub problems (D sub blocks)
- • Calculate corner blocks of inverse in each sub problem independently (This step can be efficiently parallelized)
- Form and update matrix maps that capture concatenation of neighboring blocks in a radix 2 fashion
- The matrix map is used to calculate the diagonal elements of inverse (This step can be efficiently parallelized)

Operation count ~ $O(N_x^3N_y/D + N_x^3log_2D$) Memory ~ $O(N_x^2N_y/D + N_x^2 D)$

Better operation count – Better memory usage

• N = N $_{\mathrm{\mathsf{x}}}$ N $_{\mathrm{\mathsf{y}}}$ is the number of grid points

• LU decomposition of sparse matrices scales as O(N)

$$
A \ G^r = I \ \Rightarrow \ LU \ G^r = I \ \Rightarrow \ G^r(N,N) = 1/U(N,N)
$$

• Innovation: Partition the spatial grid in clever ways and keep information about intermediate LU steps to make operation count $O(N_x^2 N_y)$

Operation count ~ $O(N_x^2 N_y)$ Memory ~ $O(N_x N_y log(N_x N_y))$ *1kB

MIT 25 nm device

"standard" nanotransistor designed by Prof. Dmitri Antoniadis

Gerhard Klimeck

PURDUE

- Gate Tunneling, Source-drain tunneling
- Computational time for current-voltage characterisitcs in the ballistic transport $limit \sim 6$ hours
	- » 64 processor SGI Origin 2000
	- » Nx = 100 and Ny = 350
	- » Energy grid points = 512 1024
- Accurate models should include scattering mechanisms - phonons, rough interfaces **Modeling of scattering using current algorithms is prohibitively expensive.**

Comparison inside a real Simulator

Evident tradeoffs between simulation time, memory, and computation:

- » FIND: fastest on a single processor for Ny [≈] 130, Nx [≤] 325.
- » PDIV: parallelizes RGF style method with little overhead, memory and computation scales gracefully for $Nx \approx 100$, $Ny \gg Nx$.
- » SPIKE: fastest for two processors, medium sized problems (Nx = 100 , Ny < 2000).

PURDUE Gerhard Klimeck

nana

•Network for Computational Nanotechnology (NCN)

•NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

»Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics

»Basic algorithms

»Scaling to 23,000 processors

- •OMEN plans
- •Algorithm work needed

