

Algorithms and Parallelization Approaches for Scaling to 23,000 Processors in Nanoelectronic Modeling (NEMO)

Gerhard Klimeck Network for Computational Nanotechnology School of Electrical and Computer Engineering Purdue University

> Purdue Math / SIAM Seminar Series February 7th, 2008

Gerhard Klimeck

Algorithms and Parallelization Approaches for Scaling to 23,000 Processors in Nanoelectronic Modeling (NEMO)

Network for Computational Nanotechnology (NCN)

•NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

»Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics

»Basic algorithms

»Scaling to 23,000 processors

•OMEN plans

Algorithm work needed

Algorithms and Parallelization Approaches for Scaling to 23,000 Processors in Nanoelectronic Modeling (NEMO)

Acknowledgements

- •NEMO 3-D development at Purdue
 - »Faisal Saied, Sunhee Lee, Hoon Ryu, Maxim Naumov, Hansang Bae, Steve Clark
 - »Rajib Rahman, Neerav Kharche
- •NEMO 1-D
 - »Development team at Texas Instruments and JPL
 - »Benchmarking at Purdue: Steve Clark and Hansang Bae
- •OMEN
 - »OMEN proposal team
- Alternative Algorithms
 - »Darve Stanford
 - »Cauley Purdue
 - »Sameh Purdue

Overcoming barriers to quantum mechanics simulations in physics, chemistry, biology, and materials to migrate nano-science to nano-technology.

Example: NEMO3D - Nanoelectronic Modeling

NEMO 3-D Technical Approach

Problem:

Nanoscale device simulation requirements:

- Cannot use bulk / jellium descriptions, need description of the material atom by atom
 => use pseudo-potential or local orbitals
- Consider finite extend, not infinitely periodic
 => local orbital approach
- Need to include about one million atoms.
 => need massively parallel computers
- The design space is huge: choice of materials, compositions, doping, size, shape.
 => need a design tool

Approach:

- Use local orbital description for individual atoms in arbitrary crystal / bonding configuration
 - Use s, p, and d orbitals.
 - Use genetic algorithm to determine material parameter fitting
- Compute mechanical strain in the system.
- Develop efficient parallel algorithms to generate eigenvalues/vectors of very large matrices
- Develop prototype for a graphical user interface based nanoelectronic modeling tool (NEMO-3D)

NCN Science Impact through HPC NEMO 3-D

NCN Science Impact through HPC NEMO 3-D

Proof of Concept Extraction of Targeted Interior Eigenstates

online simulation and more

Proof of Concept Extraction of Targeted Interior Eigenstates

FCRP

Unique and targeted eigenstates of correct symmetry can be computed in all electronic computational domains

Gerhard Klimeck

PURDUE

Gerhard Klimeck

Vertically Coupled Seven-Dot Molecule Identical dots

Vertically Coupled Seven-Dot Molecule Strain asymmetry with identical dots

PURDUE Gerhard Klimeck

Vertically coupled QD molecule composed of nonidentical dots

an NCN project

162.25 nm

PURDUE Gerhard Klimeck

nano

Vertically Coupled Seven-Dot Molecule Growth asymmetry => non-identical dots

Vertically Coupled Seven-Dot Molecule Growth asymmetry => non-identical dots

- Application in lasers
- Strain: 44.7 Ma
- Electronics: 6.1 Ma
- 7 non-identical dots,
 WITH strain
 - => competing asymmetries
- Large dot->top, strain->bottom
- p-like states mixed into band.

How to Treat Disordered Systems?

 In and Ga atoms are randomly placed

- Real alloys are spatially disordered
- Different samples "look" different => statistical properties

Typical approach: VCA

- average over In and Ga
- create an "average atom" "InGa"

What do interfaces REALLY mean now?

In/Ga atoms are randomly placed

- Interface is rugged in 3-D
- => Confinement changes!
- Material not homogeneous
 => fluctuations in material!
- VCA ignores all that!

Inhomogeneous Broadening due to Alloy Disorder

Problem:

- Cations are randomly distributed in alloy.
- Does alloy disorder limit electronic structure uniformity for dot ensembles?
- Requires atomistic simulation tool. **Approach:**
- Simulate a statistical ensemble of dots.
 - · Identical in size and shape
 - Different only in cation ordering.

In_{0.6}Ga_{0.4}As Lens Shaped Dot Diameter=30nm,Height=5nm, GaAs embedded ~1,000,000 Atom Simulation, sp3s^{*} basis In and Ga atoms are randomly distributed Inhomogeneous Broadening? Simulation of Alloy Dot Ensemble $\Gamma=? meV$ $E_{eh}=1.05eV$

Measured Γ =34.6 meV (R. Leon, PRB, 58, R4262)

Inhomogeneous Broadening due to Alloy Disorder >1,000 quantum dot ensemble

Problem:

- Cations are randomly distributed in alloy.
- Does alloy disorder limit electronic structure uniformity for dot ensembles?
- Requires atomistic simulation tool. **Approach:**
- Simulate a statistical ensemble of dots.
 - · Identical in size and shape
 - Different only in cation ordering.

In_{0.6}Ga_{0.4}As Lens Shaped Dot Diameter=30nm,Height=5nm, GaAs embedded ~1,000,000 Atom Simulation, sp3s^{*} basis In and Ga atoms are randomly distributed Inhomogeneous Broadening?

Parallelization and Methods

- Divide Simulation domain into slices.
- Communication only from one slice to the next (nearest neighbor)
- Communication overhead across the surfaces[•] of the slices.
- Limiting operation: complex sparse matrix-vector multiplication
- Enable Hamiltonian storage or re-computation on the fly.

- Strain computed in open source CG algorithm
- Electronic structure needs eigenvalues and eigenvectors. Matrix is Hermitian
 Released NEMO 3-D methods:
 - Standard 2-pass Lanczos
 - PARPACK about 10x slower
 - Folded Spectrum Method (Zunger), also typically slower than Lanczos
 - Block Lanczos
 - Tracemin

Detailed Scaling Benchmarks Recomputed System Matrix

- IBM Blue Gene L RPI
- June 2007 #7 / TOP500

• Almost perfect scaling !

Detailed Scaling Benchmarks Recomputed System Matrix

- IBM Blue Gene L RPI
- June 2007 #7 / TOP500

- Cray XT3/4 Oak Ridge Natl. Lab
- June 2007 #2 / TOP500

Detailed Scaling Benchmarks Cray XT3/4 Recomputed System Matrix vs Stored System Matrix

 Store the Sparse Matrix H for Hx=y Recompute the Sparse Matrix H for Hx=y

8 million atoms - Scaling up to 8,192 cores <u>TOP500: #2, #</u>7, #8, #30, #46

- Clusters have enough memory can store the Hamiltonian => speed
- Blue Gene small memory need to recompute matrix on the fly
- XT3/4 best for NEMO3D

8 million atoms - Scaling up to 8,192 cores TOP500: #2, #7

- Clusters have enough memory can store the Hamiltonian => speed
- Blue Gene small memory need to recompute matrix on the fly
- XT3/4 best for NEMO3D

Algorithms and Parallelization Approaches for Scaling to 23,000 Processors in Nanoelectronic Modeling (NEMO)

Network for Computational Nanotechnology (NCN) NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

 »Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics
 »Basic algorithms

»Scaling to 23,000 processors

•OMEN plans

•Algorithm work needed

Resonant Tunneling Diode

7 ml

7 ml

50 nm

nid

nid

1e18

AIAs

InGaAs

InGaAs

Conduction band diagrams for different voltages and the resulting current flow.

Gerhard Klimeck

7

Algorithm Overview

Have three levels of possible parallelization:

- Loop over bias points
- Loop over momentum points
- Loop over energy points

coarse grain medium grain fine grain

Dispersion in the Transverse Direction Electron vs. Hole Subbands

an NCN project

nanoh

online simulation and more

Parallelization of Bias Points

Master-Slave approach

» master only distributes and gathers individual bias points

- This I-V has 70 bias points:
 - » Good scaling up to 15 CPUs, Strong steps at 36 and 24 CPUs / Load imbalance

 ✓ Max speed-up: 21 at 24 CPU 87% efficiency 30 at 36 CPU 83% efficiency
 PURDUE €etbargen€RU speed-up: 32 at 64 CPU 50% efficiency

Parallelization of Momentum Integral

- •K-grid has 21 points:
- Even bin distribution in one communication step.
- •Results:
 - »Good scaling up to 8 CPUs, Strong steps at 11 and 21 CPUs
 - ✓Load imbalance
 - ✓Max speed-up:

✓ Large CPU Speed-up:

10 at 11 CPU 91% efficiency 18 at 21 CPU 86% efficiency 18 at 64 CPU 28% efficiency

- Adaptive mesh refinement starting from 50-200 nodes
- Refinement ends on 2 nodes at a time for 1 resonance
- Energy grid is at the lowest level -> communication overhead

an NCN projec

• Maximum speed-up: 7.5 at 10 CPU 75% efficiency

efficiency

PURDUE Cerhard Klimeck 13 at 64 CDII 20%

PURDUE

Gerhard Klimeck

Parallelization of One Level

- Parallelization on 64 CPUs is unsatisfactory in all one level algorithms!
 - » For this particular benchmark typical for electron RTD computation
- How about parallelization on multiple levels?

Parallelization of Multiple Levels

- Parallelization on 64 CPUs is unsatisfactory in all one level algorithms!
- How about parallelization on multiple levels?
 - » 4 possibilities: I-K, I-E, K-E, I-K-E all of them implemented

» Try to maximize number of CPUs in the coarser grids Gerhard Klimeck

Parallelization of Bias and Momentum

• Still see some load imbalance problems

- Maximum speed-up: 40 at 43 CPU 93% efficiency 46 at 57 CPU 81% efficiency
- •Large CPU speed-up: 45 at 64 CPU 70% efficiency

Purcompared to laparallelism only:

Parallelization of Bias and Energy

Much fewer load imbalance problems

- •Maximum speed-up: 43 at 58 CPU 74% efficiency
- •Large CPU speed-up: 42 at 64 CPU 65% efficiency
- I1 I2 I3 I4 E1 E2 E3 E4 E1 E2 E3 E4 E1E2 E3E4 E1E2 E3 E4 CPU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

• Compared to I parallelism only: PURDarge GRidspeed-up: 32 at 64 CPU 50%

NEMO 1-D Parallelization Conclusions year 2002

- Efficient parallelization for realistic RTD simulations is non-trivial.
- Parallelization on multiple levels:
 - » Flexibility to tackle different problems
 - » Enabled simulation of fully charge self-consistent simulations
 - ✓ Reduced compute time from 14 days to 6 hours. YEAR 2002 – 64 node cluster
- Beowulf clusters are affordable and useful for computational electronics.

Electron transport in RTDs: Density of States and Transmission

000

PURDUE

Gerhard Klimeck

- Density of States: Shows the spatial and energetic "location" of possible states
- Transmission: shows spikes where the DOS is strong in the central RTD
- Small effective mass: large state separation
- Large effective mass: "heavy" electrons
 - » small state separation
 - » Sharp peaks strong confinement weak coupling to outside
 - » Deep background/peak ratio: 10¹³ strong confinement

weak coupling to outside

Hole transport in RTDs: Simplified Density of States and Transmission

nanc

Hole Transport in RTDs sp3s* full band model

Transmission coefficient at k_x=0

an NCN project

nano

• sp³s* represents all bands simultaneously. Can identify LH, HH, and SO features **PURDUE** Gerhard Klimeck

Dispersion in the Transverse Direction Electron vs. Hole Subbands

nanoHUB

an NCN project

NEMO 1-D on ORLN Cray XT3/4 Almost Perfect scaling to 23,000 cores!

 $I(V) \propto 2\pi \int k dk \int dET(E,k) (f_L(E,V) - f_R(E,V))$

Algorithms and Parallelization Approaches for Scaling to 23,000 Processors in Nanoelectronic Modeling (NEMO)

Network for Computational Nanotechnology (NCN) NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

 »Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics
 »Basic algorithms

»Scaling to 23,000 processors

•OMEN plans

Algorithm work needed

PURDUE

Gerhard Klimeck

Moving towards the peta-scale

Algorithms and Parallelization Approaches for Scaling to 23,000 Processors in Nanoelectronic Modeling (NEMO)

Network for Computational Nanotechnology (NCN) NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

»Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics

»Basic algorithms

»Scaling to 23,000 processors

•OMEN plans

•Algorithm work needed

What is the NEGF method?

- Non Equilibrium Green's Function method
- 1960s: Developed by the theoretical physicists
- 1990: Vision to use the NEGF as a quantum mechanical method to model nanodevices
- 2000s: Considered state-of-the-art modeling method to predict performance of emerging nanodevices
- Why work on Computational Algorithms?

Typical matrix equation $\begin{bmatrix}
A \\
x
\end{bmatrix} = \begin{bmatrix}
b
\end{bmatrix}$ Find column vector x

Gerhard Klimeck

PURDUE

Quasi 1D Transport Devices

Organic Molecules / Carbon Nanotube

Biomolecule

- Device structures are very different but underlying equations and computational algorithms are very similar
- => Algorithms can be generalized for many configurations and materials
- => choose basis wisely
- => compute Poisson smartly
- => design NEGF algorithms independent of geometry and basisse and set algorithms independent

Underlying equations & interpretation

Density of States = $-\frac{1}{\pi}Im[G^r(x, x, E)]$ Electron Density = $-iG^{<}(x, x, E)$ Current Density $\propto G^{<}(x, x + 1, E)$

Mathematical problem & matrix structure

The block tridiagonal system is solved at each energy to obtain electron density (diagonal elements of G[<])

Current approach: Recursive algorithm

of grid points =
$$N_x N_y$$

- What are we solving for? Electron Density – Diagonal elements of G[<]
- Algorithmic flow based on Dyson's equation
 - » Recursive Green's function approach
 - » S al algorithm at each energy
 - » Highly stable
- Block Size = N_x ; Number of blocks = N_v
- Each step involves a matrix inversion
- Operation Count ~ 6 $N_x^3 N_y$
- Memory ~4 $N_x^2 N_y$
- We solve for the diagonal blocks of G[<] but we need only the diagonal elements
- Quantum Mechanical Modeling of ..., PURD of Appl. Phys., v. 91, p. 2343-2354 (2002) Gerhard Klimeck

Grand Challenges: Nanowire and FinFETs

 $(N_{x} > 2000)$

D = 1.5 - 3 nm Nanowire D = 10 - 30 nm FinFET

- Matrix size of each layer (# of orbitals) ~ 2000+ (N_y>700) (N_y>700)
- Number of layers ~ 700
- Best Available method RGF:

» Operation Count ~ 6 $N_x^3 N_v$ $\sim 4 N_x^2 N_y$ » Memory

Memory ~ 100 GB Computational Time ~ 60,000+ hours

PuriAre there better ways to solve these systems?

N_x>200,000

Algorithms development at NCN

NEGF device modelers

Active Collaboration

Applied Mathematicians

- Benchmark algorithm RGF
 - » Operation count
 - » Memory
 - » Fundamentally serial

• New algorithms to solve the NEGF equations have been developed:

 $\sim O(N_x^3 N_y)$

 $\sim O(N_x^2 N_y)$

- » PDIV Parallel Divide and Conquer Approach (SRC funded), Stephen Cauley & Jitesh Jain, Balakrishnan-Koh group, Purdue
 - ✓ Operation count ~ $O(N_x^3N_y/D + N_x^3log_2D)$ reduced by D, with factor
 - ✓ Memory factor

 $\sim O(N_x^2 N_y/D + N_x^2 D)$

reduced by D, with

- ✓ Parallel, scales almost linearly with CPUs
- » FIND Nested Dissection method (NCN funded), Song Li, Darve group, Stanford
- ✓ Operation count $\sim O(N_x^2 N_y)$ <u>PURDUE</u> ✓ GMERHORYECK $\sim O(N_y N_y \log(N_y))$

Divide and Conquer Approach

Novel divide and conquer approach based on the matrix inversion lemma

D = 4

Corner Blocks

- Divide the original matrix into D sub problems (D sub blocks)
- Calculate corner blocks of inverse in each sub problem independently (This step can be efficiently parallelized)
- Form and update matrix maps that capture concatenation of neighboring blocks in a radix 2 fashion
- The matrix map is used to calculate the diagonal elements of inverse (This step can be efficiently parallelized)

Operation count ~ $O(N_x^3N_v/D + N_x^3\log_2 D)$ Memory ~ $O(N_x^2N_v/D + N_x^2 D)$

Better operation count – Better memory usage

• $N = N_x N_y$ is the number of grid points

• LU decomposition of sparse matrices scales as O(N)

$$A G^r = I \rightarrow LU G^r = I \rightarrow G^r(N,N) = 1/U(N,N)$$

- Innovation: Partition the spatial grid in clever ways and keep information about intermediate LU steps to make operation count $O(N_x^2 N_y)$

Operation count ~ $O(N_x^2 N_y)$ Memory ~ $O(N_x N_y \log(N_x N_y))^*1kB$

MIT 25 nm device

"standard" nano transistor designed by Prof. Dmitri Antoniadis

Gerhard Klimeck

PURDUE

- Gate Tunneling, Source-drain tunneling
- Computational time for current-voltage characterisitcs in the ballistic transport limit ~ 6 hours
 - » 64 processor SGI Origin 2000
 - » Nx = 100 and Ny = 350
 - » Energy grid points = 512 1024
- Accurate models should include scattering mechanisms - phonons, rough interfaces Modeling of scattering using current algorithms is prohibitively expensive.

Comparison inside a real Simulator

Evident tradeoffs between simulation time, memory, and computation:

- » FIND: fastest on a single processor for Ny \approx 130, Nx \leq 325.
- » PDIV: parallelizes RGF style method with little overhead, memory and computation scales gracefully for Nx ≈ 100, Ny >> Nx.
- » SPIKE: fastest for two processors, medium sized problems (Nx = 100, Ny < 2000).

an NCN projec

nqnc

Algorithms and Parallelization Approaches for Scaling to 23,000 Processors in Nanoelectronic Modeling (NEMO)

Network for Computational Nanotechnology (NCN)

•NEMO 3-D

»Physics motivation – multimillion atom simulation

»Basic algorithms

»Scaling to 8,192 processors

•NEMO 1-D

»Physics motivation –transport of electrons quantum statistical non-equilibrium mechanics

»Basic algorithms

»Scaling to 23,000 processors

- •OMEN plans
- Algorithm work needed

