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Empirical Tight Binding

The Tight Binding (TB) model was initially developed for solids (band structures)
but currently is widely used for both solids and molecules.

TB is based on a description of electronic states starting from the limit of isolated
atomic orbitals.

It is a simple model that gives good quantitative results for bands derived from
strongly localized atomic orbitals, which decay to essentially zero on a radius
much smaller than the next neighbor half-distance in the solid.

For the conduction bands (or “extended states”), the results of tight-binding are
usually in rather poor agreement with experiment.

Tight binding can be systematically improved by including additional
levels/bands, so that the accuracy of the calculated bands increases, at the
expense of the simplicity and transparency of the model.
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Tight Binding
The approximation of the TB method is to assume that phase space is spanned
by atomic-like orbitals and that this is sufficient to describe the wave function
solution of the Schrodinger equation.

TB is also referred to as LCAO - linear
combination of atomic orbitals.

Such an atomic-like basis provides a natural,
physically motivated description of electronic
states in matter.

In practice there are many versions of TB,
depending on the degree of "ab-initio". Some
methods use true atomic-like orbitals and others
are semi-empirical using fitted parameters.
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Tight Binding - An Example
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We wish to determine the coefficients in the expansion

In TB, this amounts to setting up a matrix eigenvalue problem
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The eigenvalues correspond to the energies, and the
eigenvectors (the coefficients) to the states
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Tight Binding - An Example

EA

EB

antibonding

bonding

If atoms A and B are both H, is the system bound?  What if they are both
He?

Describe some similarities and differences between Tight-Binding and HF.

! 

"± =
1

2
(E

A
+ E

B
) + V s ±

1

2
4V 

2 + #"( )
2[ ]
1
2

If we were to do this, we would find an expression for the eigenvalues that looks like:
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Multi-electron Atoms and Molecules

Let R1, …., RN = positions of the N nuclei
      eZ1, …., eZN = charge of the N nuclei
      M1, …, MN = masses of the nuclei
      r1,…, rn = positions of the n electrons e-

e-

e-

e-e-

e-

e-

  

! 

) 
H =

1

2

ZiZ je
2

Ri " R ji=1

N

#
j=1

N

# "
Z je

2

ri " R ji=1

n

#
j=1

N

# + "
h
2

2m

$ 

% 
& 

' 

( 
) 

j=1

n

# * rj

2
+
1

2

e
2

ri " rji=1

n

#
j=1

n

#

The electronic Hamiltonian looks like this:
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Note how the only part of the Hamiltonian that changes for different systems is
the external potential.
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Multi-electron Atoms and Molecules
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Let R1, …., RN = positions of the N nuclei
      eZ1, …., eZN = charge of the N nuclei
      M1, …, MN = masses of the nuclei
      r1,…, rn = positions of the n electrons e-
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The electronic Hamiltonian looks like this:

And our eigenvalue problem looks like:
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Note how the only part of the Hamiltonian that changes for different systems is
the external potential.
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Solving the Eigenvalue Equations
• We’ve talked about the Hartree, Hartree-Fock, and post-HF approaches.

We’ve also seen that we get poor scaling when we want to include any
correlation effects at all.

• An underlying issue here is that, no matter how you slice it, the
wavefunction Ψ is a beast of an entity to have to deal with.

• For example, consider that we have n electrons populating a 3D space.
Let’s divide 3D space into NxNxN=2x2x2 grid points.  To reconstruct Ψ, how
many points must we keep track of?

• The electron density seems to be a more manageable quantity.  Wouldn’t it
be nice if we could reformulate our problem in terms of the density, rather
than the wavefunction?
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Hohenberg-Kohn I
• As it turns out, we can - and this is the basis for DFT.
• In order to reformulate our problem in terms of the electronic

density, we must first establish a few ground rules
• These are, namely, the two Hohenberg-Kohn theorems and the

Kohn-Sham formalism

- The external potential
corresponds to a unique ground
state electron density.
- A given ground state electron
density corresponds to a unique
external potential
- In particular, there is a one to
one correspondence between
the external potential and the
ground state electron density

HOHENBERG-KOHN I
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Hohenberg-Kohn II

! 

E "(r)[ ] = V
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There exists a universal functional of the density F[ρ(r)] such that the
ground state energy E

is minimized at the true ground state density.

Note how very useful this is.  We now have a variational theorem to
obtain the ground state density (and, correspondingly, the energy)

By the way, what is a “functional”?

A functional is a mapping from a function (the electron density) to a
number (the ground state energy).

The equation that we need to solve comes from taking a functional
derivative

UNIVERSAL!
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Hohenberg-Kohn II
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The equation that we need to solve comes from taking a functional
derivative

Note that a Lagrange multiplier has showed up.  The constraint that we
are accomodating is:
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Aha - we have gone from the 3n dimensional integrals to the 3
dimensional integrals.

i.e., previously, we had to deal with:

In principle - if you tell me the ground state electron density, I can plug
into this integral expression and give you the GS energy.
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Hohenberg-Kohn II

But, back to the functional form of the Hohenberg-Kohn expression,
which we will use to evaluate the energy.
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But wait … what is the form of the universal functional F?  We only said
that it exists; we did not specify what it is.
This is, in fact, the origin of the ubiquitous statement that “In principle,
DFT is exact.  In practice, we must approximate.”
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What might F[ρ(r)] look like?
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UNIVERSAL!

From simple inspection:

Naively, we might expect the functional to contain terms that
resemble the kinetic energy of the electrons and the
coulomb interaction of the electrons



Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2006, U.C. Berkeley

Kohn-Sham Approach

Kohn and Sham said:

Where we have a separation of kinetic, Coulomb, and exchange/correlation
terms.

Importantly, the kinetic part is defined as the kinetic energy of the system of non-
interacting electrons at the same density.

The Coulomb term is simply the Hartree electrostatic energy - namely, a
classical interaction between two charges summed over all possible pairwise
interactions.

The equation above, in a sense, acts to define the last term, the exchange-
correlation part, as simply everything else that should be there to make this
approximation to F as accurate as possible.

! 

F "(r)[ ] = E
KE

"(r)[ ] + E
H
"(r)[ ] + E

XC
"(r)[ ]


