#### **Computational Nanoscience**

NSE C242 & Phys C203 Spring, 2008

Lecture 17:

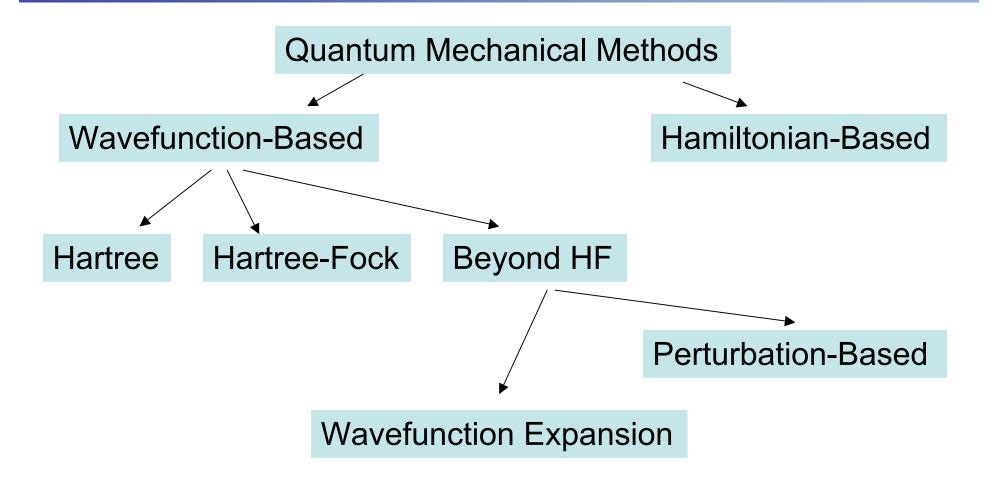
**Tight-Binding &** 

**Moving Towards Density Functional Theory** 

March 18, 2008

Elif Ertekin
Jeffrey C. Grossman

#### Review



# **Empirical Tight Binding**

The Tight Binding (TB) model was initially developed for solids (band structures) but currently is widely used for both solids and molecules.

TB is based on a description of electronic states starting from the limit of isolated atomic orbitals.

It is a simple model that gives good quantitative results for bands derived from strongly localized atomic orbitals, which decay to essentially zero on a radius much smaller than the next neighbor half-distance in the solid.

For the conduction bands (or "extended states"), the results of tight-binding are usually in rather poor agreement with experiment.

Tight binding can be systematically improved by including additional levels/bands, so that the accuracy of the calculated bands increases, at the expense of the simplicity and transparency of the model.

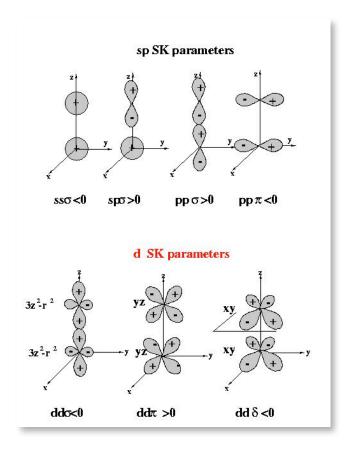
# **Tight Binding**

The approximation of the TB method is to assume that phase space is spanned by atomic-like orbitals and that this is sufficient to describe the wave function solution of the Schrodinger equation.

TB is also referred to as LCAO - linear combination of atomic orbitals.

Such an atomic-like basis provides a natural, physically motivated description of electronic states in matter.

In practice there are many versions of TB, depending on the degree of "ab-initio". Some methods use true atomic-like orbitals and others are semi-empirical using fitted parameters.



# **Tight Binding - An Example**





$$H|\psi\rangle = \varepsilon |\psi\rangle$$

LCAO expansion of wavefunction:  $|\psi\rangle = c_A |s_A\rangle + c_B |s_B\rangle$ We wish to determine the coefficients in the expansion

In TB, this amounts to setting up a matrix eigenvalue problem

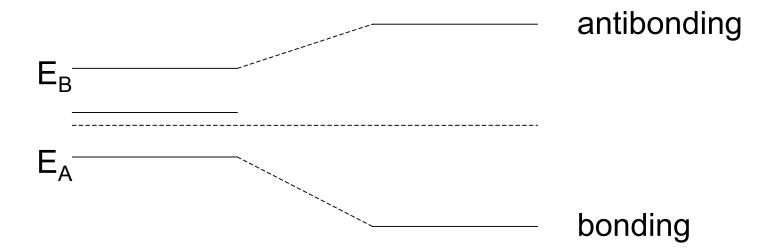
$$\begin{pmatrix} \langle s_A | H | s_A \rangle - \varepsilon & \langle s_A | H | s_B \rangle \\ \langle s_B | H | s_A \rangle & \langle s_B | H | s_B \rangle - \varepsilon \end{pmatrix} \begin{pmatrix} c_A \\ c_B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

The eigenvalues correspond to the energies, and the eigenvectors (the coefficients) to the states

# **Tight Binding - An Example**

If we were to do this, we would find an expression for the eigenvalues that looks like:

$$\varepsilon_{\pm} = \frac{1}{2} (E_A + E_B) + \overline{V}s \pm \frac{1}{2} \left[ 4\overline{V}^2 + (\Delta \varepsilon)^2 \right]^{\frac{1}{2}}$$

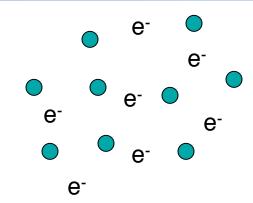


If atoms A and B are both H, is the system bound? What if they are both He?

Describe some similarities and differences between Tight-Binding and HF.

#### Multi-electron Atoms and Molecules

Let  $R_1, ...., R_N$  = positions of the N nuclei  $eZ_1, ...., eZ_N$  = charge of the N nuclei  $M_1, ..., M_N$  = masses of the nuclei  $r_1, ..., r_n$  = positions of the n electrons



The electronic Hamiltonian looks like this:

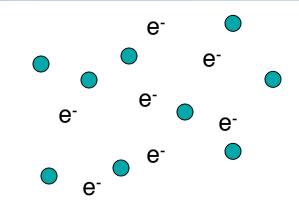
$$\widehat{H} = \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \frac{Z_{i}Z_{j}e^{2}}{|R_{i} - R_{j}|} - \sum_{j=1}^{N} \sum_{i=1}^{n} \frac{Z_{j}e^{2}}{|r_{i} - R_{j}|} + \sum_{j=1}^{n} \left(-\frac{\hbar^{2}}{2m}\right) \nabla_{r_{j}}^{2} + \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{e^{2}}{|r_{i} - r_{j}|}$$

$$V_{ext}(r_{i}) \qquad T \qquad V_{int}$$

Note how the only part of the Hamiltonian that changes for different systems is the external potential.

#### Multi-electron Atoms and Molecules

Let  $R_1, \ldots, R_N$  = positions of the N nuclei  $eZ_1, \ldots, eZ_N$  = charge of the N nuclei  $M_1, \ldots, M_N$  = masses of the nuclei  $r_1, \ldots, r_n$  = positions of the n electrons



The electronic Hamiltonian looks like this:

$$\widehat{H} = \frac{1}{2} \sum_{j=1}^{N} \sum_{i=1}^{N} \frac{Z_{i}Z_{j}e^{2}}{|R_{i} - R_{j}|} - \sum_{j=1}^{N} \sum_{i=1}^{n} \frac{Z_{j}e^{2}}{|r_{i} - R_{j}|} + \sum_{j=1}^{n} \left(-\frac{\hbar^{2}}{2m}\right) \nabla_{r_{j}}^{2} + \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} \frac{e^{2}}{|r_{i} - r_{j}|}$$

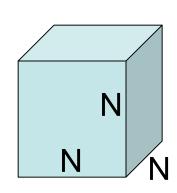
$$V_{ext}(r_{i}) \qquad T \qquad V_{int}$$

Note how the only part of the Hamiltonian that changes for different systems is the external potential.

And our eigenvalue problem looks like:  $\hat{H}\Psi(r_1,...,r_n) = \varepsilon\Psi(r_1,...,r_n)$ 

# Solving the Eigenvalue Equations

- We've talked about the Hartree, Hartree-Fock, and post-HF approaches.
   We've also seen that we get poor scaling when we want to include any correlation effects at all.
- An underlying issue here is that, no matter how you slice it, the wavefunction  $\Psi$  is a beast of an entity to have to deal with.
- For example, consider that we have n electrons populating a 3D space.
   Let's divide 3D space into NxNxN=2x2x2 grid points. To reconstruct Ψ, how many points must we keep track of?



$$\Psi = \Psi(r_1, ..., r_n) \qquad \text{# of points} = N^{3n}$$

| n = #<br>electrons | Ψ (N <sup>3n</sup> ) | ρ (N³) |
|--------------------|----------------------|--------|
| 1                  | 8                    | 8      |
| 10                 | 10 <sup>9</sup>      | 8      |
| 100                | 10 <sup>90</sup>     | 8      |
| 1000               | 10 <sup>900</sup>    | 8      |

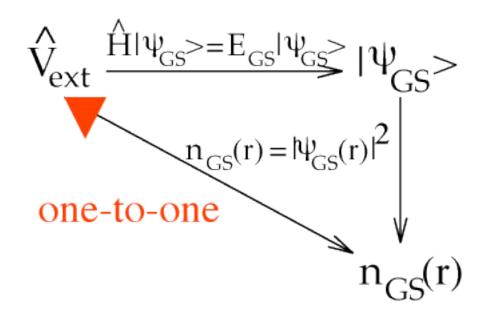
 The electron density seems to be a more manageable quantity. Wouldn't it be nice if we could reformulate our problem in terms of the density, rather than the wavefunction?

# Hohenberg-Kohn I

- As it turns out, we can and this is the basis for DFT.
- In order to reformulate our problem in terms of the electronic density, we must first establish a few ground rules
- These are, namely, the two Hohenberg-Kohn theorems and the Kohn-Sham formalism

#### **HOHENBERG-KOHN I**

- The external potential corresponds to a unique ground state electron density.
- A given ground state electron density corresponds to a unique external potential
- In particular, there is a one to one correspondence between the external potential and the ground state electron density



### Hohenberg-Kohn II

There exists a universal functional of the density  $F[\rho(r)]$  such that the ground state energy E

$$E[\rho(\mathbf{r})] = \int V_{ext}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + F[\rho(\mathbf{r})]$$
UNIVERSAL!

is minimized at the true ground state density.

Note how very useful this is. We now have a variational theorem to obtain the ground state density (and, correspondingly, the energy)

By the way, what is a "functional"?

A functional is a mapping from a function (the electron density) to a number (the ground state energy).

The equation that we need to solve comes from taking a functional derivative

$$\frac{\delta}{\delta\rho} \Big( E - \mu \int \rho(r) dr \Big) = V_{ext} + \frac{\delta F}{\delta\rho} - \mu = 0$$

## Hohenberg-Kohn II

The equation that we need to solve comes from taking a functional derivative

$$\frac{\delta}{\delta \rho} \Big( E - \mu \int \rho(r) dr \Big) = V_{ext} + \frac{\delta F}{\delta \rho} - \mu = 0$$

Note that a Lagrange multiplier has showed up. The constraint that we are accomodating is:

$$n = \int \rho(\mathbf{r}) d\mathbf{r}$$

## Hohenberg-Kohn II

But, back to the functional form of the Hohenberg-Kohn expression, which we will use to evaluate the energy.

$$E[\rho(\mathbf{r})] = \int V_{ext}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + F[\rho(\mathbf{r})]$$

Aha - we have gone from the 3n dimensional integrals to the 3 dimensional integrals.

i.e., previously, we had to deal with:

$$E = \int \Psi^* (V_{ext} + T + V_{int}) \Psi d^{3n} r$$

In principle - if you tell me the ground state electron density, I can plug into this integral expression and give you the GS energy.

But wait ... what is the form of the universal functional F? We only said that it exists; we did not specify what it is.

This is, in fact, the origin of the ubiquitous statement that "In principle, DFT is exact. In practice, we must approximate."

# What might $F[\rho(r)]$ look like?

From simple inspection:

$$E = \int \Psi^* (V_{ext} + T + V_{int}) \Psi d^{3n} r$$

$$UNIVERSAL!$$

$$E[\rho(\mathbf{r})] = \int V_{ext}(\mathbf{r}) \rho(\mathbf{r}) d\mathbf{r} + F[\rho(\mathbf{r})]$$

Naively, we might expect the functional to contain terms that resemble the kinetic energy of the electrons and the coulomb interaction of the electrons

## Kohn-Sham Approach

Kohn and Sham said:

$$F[\rho(\mathbf{r})] = E_{KE}[\rho(\mathbf{r})] + E_{H}[\rho(\mathbf{r})] + E_{XC}[\rho(\mathbf{r})]$$

Where we have a separation of kinetic, Coulomb, and exchange/correlation terms.

Importantly, the kinetic part is defined as the kinetic energy of the system of non-interacting electrons at the same density.

The Coulomb term is simply the Hartree electrostatic energy - namely, a classical interaction between two charges summed over all possible pairwise interactions.

The equation above, in a sense, acts to define the last term, the exchange-correlation part, as simply everything else that should be there to make this approximation to F as accurate as possible.