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Homework Assignment: Hartree-Fock and DFT on
molecules via GAMESS. Will be posted by Friday
morning. Due: April 3rd

Class Projects: Abstract/Proposal for your class
project is due on April 10th. (one or two paragraphs)

Bring your laptop for in-class simulation on
Tuesday, April 1st.

REMEMBER : There is no class next week (so don’t
come!)
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Errors, Lies, and Mistruths

Unrestricted vs. Restricted Open Shell Hartree-Fock for O,
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For open shell systems, UHF is better. The enhanced exchange interaction in the
o channel electrons “pushes down” the eigenvalues relative to the 3 channels.

Energy of unrestricted calculation is always lower than or equal to that of restricted.
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After Foulkes, Mitas, Needs, and Rajagopal, pg 33.

Rev Mod Phys 73 (2001).

Method |E_,, E..n Scaling | Total
% error with # time for

electrons |C,,
HF 0 50% N4 14
DFT-LDA |N/A 15-25% |N3 1
CC 75% 10-15% | N’ 1500
VMC 85% 2-10% N3+eN+4 |16
DMC 95% 1-4% N3+eN4 | 300




Density Functional Theory

« Completely rigorous approach to any interacting problem in which we
can map, exactly, the interacting problem to a non-interacting one.
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interacting part!cles in a real interacting electrons (with the same
external potential density as the interacting system) in

some effective potential
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Ingredients to Density Functional Th

* Ingredients:

— Note that what differs from one electronic system to another is
the external potential of the ions

— Hohenberg-Kohn |: one to one correpondence between the
external potential and a ground state density

— Hohenberg-Kohn Il: Existence of a universal functional such that
the ground state energy is minimized at the true ground state
density

E = min{ V.. ()p@)dr + F[pr)]]
P '\

UNIVERSAL!

« The universality is important. This functional is exactly the same for
any electron problem. If | evaluate F for a given trial orbital, it will
always be the same for that orbital - regardless of the system of
particles.

— Kohn-Sham: a way to approximate the functional F
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Euler-Lagrange System

The Hohenberg-Kohn theorems give us a variational statement about
the ground state density:

0 O
g(E —ufp(r)dr) = £ +V _=u

“the exact density makes the functional derivative of F
exactly equal to the negative of the external potential (to
within a constant)”

If we knew how to evaluate F, we could solve all Coulombic
problems exactly.

However, we do not know how to do this. We must, instead,
approximate this functional. This is where Kohn-Sham comes in.
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Kohn-Sham Approach

Kohn and Sham said:
Flp)|=E|[p@m]+ E,[pr)]+ Ex| p()]

Where we have a separation of kinetic, Coulomb, and exchange/correlation
terms.

Importantly, the kinetic part is defined as the kinetic energy of the system of non-
interacting electrons at the same density.

The Coulomb term is simply the Hartree electrostatic energy - namely, a
classical interaction between two charges summed over all possible pairwise
interactions.

The equation above, in a sense, acts to define the last term, the exchange-

correlation part, as simply everything else that should be there to make this
approximation to F as accurate as possible.
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Kohn-Sham Approach

The next step to solving for the energy is to introduce a set of one-electron
orthonormal orbitals.

o) = Y|, )

Now the variational condition can be applied, and one obtains the one-electron
Kohn-Sham equations.
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Where V. is the exchange correlation functional, related to the xc energy as:

Vielr]= (6E XC[P(I’)])

op(r)
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Comparison with Hartree-Fock
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Naturally, you're remembering the Hartree-Fock equations and realizing that this
equation is in fact quite similar:
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So, just as with Hartree-Fock, the approach to solving the Kohn-Sham equations
is a self-consistent approach.

That is, an initial guess of the density is fed into the equation, from which a set of
orbitals can be derived. These orbitals lead to an improved value for the density,
which is then taken in the next iteration to recompute better orbitals. And so on.
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Kohn-Sham System

To solve the Kohn-Sham equations, a number of different methods exist.

These tend to differ first and foremost in the choice of basis set for expanding
the Kohn-Sham orbitals.

As in Hartree-Fock, for molecular systems a typical choice can be some type
of atom-centered basis such as sums of Gaussians.

In extended (e.g., solid, liquid) systems, planewaves are a much more
suitable choice of basis.

One important difference between DFT and Hartree-Fock, in general, is that
the Kohn-Sham orbitals used in DFT are a set of non-interacting orbitals
designed to give the correct density and have no physical meaning beyond
that.

This is in contrast to the orbitals in Hartree-Fock theory, which directly
represent electrons and are designed to give the correct wavefunction as
opposed to just the density.
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The Exchange-Correlation F

The exchange-correlation functional is clearly the key to success of DFT.

One of the great appealing aspects of DFT is that even relatively simple
approximations to V, can give quite accurate results.

The local density approximation (LDA) is by far the simplest and most widely
used functional.

The LDA approach is based on a model known as the uniform electron gas
where the electron density is constant throughout all space.

In LDA, we approximate the exchange-correlation energy at each point in space
by the exact exchange-correlation energy of the homogeneous electron gas.

The exchange-correlation energy per electron of the uniform electron gas is
known accurately for all densities of practical interest from various approaches
such as quantum Monte Carlo.

Ceperley and Alder* have perhaps the most commonly used QMC calculations
for the electron gas, which are then expressed in some analytic or parametrized
form (e.g., Perdew-Zunger) that makes them amenable to calculation in LDA.
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Local Density Approximation

In the original Kohn-Sham paper, the authors themselves cast doubt on its
accuracy for many properties. “We do not expect an accurate description of
chemical bonding.”

And yet, not until at least 10 years later (the 70’s), time and time again it was
shown that LDA provided remarkably accurate results.

LDA was shown to give excellent agreement with experiment for, e.g., lattice
constants, bulk moduli, vibrational spectra, structure factors, and much more.

One of the reasons for its huge success is that, in the end, only a very small
part of the energy is approximated.
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Local Density Approximation

LDA also works well because errors in the approximation of exchange and
correlation tend to cancel.

For example, in a typical LDA atom, there’s a ~10% underestimate in the
exchange energy.

This error in exchange is compensated by a ~100-200% overestimate of the
correlation energy.

Exchange Correlation

0.00186
0.00108
0.000305
<0.00047

‘ -0.00125

Hood et al PRB 57 8972 (1998)
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In theory, the LDA method should work best for systems with slowly varying
densities (i.e., as close to a homogeneous electron gas as possible).

Local Density Approximation

However, it is interesting that even for many systems where the density

varies considerably, the LDA approach performs well!

0.10

§ 8

Density (electrons/bohr * )
o
®

0.02

0.00

Slow varying Faster varying
e B -
®N atom I ”
04 . | ‘
- h |
gos | |
i
| : o
0.1 /.' J}k
| O
T 15 0‘00““’"’%!/ 016‘ IRSVRRS

Distance along (111) (bohr)

Distance along (111) (bohr)

Elif Ertekin & Jeffrey C. Grossman, NSE C242 & Phys C203, Spring 2006, U.C. Berkeley

E- N ¢ N o))

Bulk modulus (Mbar)
N w

—

o

Bulk Modulus

e

GaAs




Good & Bad - Local Density Approximation

Total energies
Ground state densities well-represented

12 T T

Ne aton[1
exact _—
10 - LDA — -

Cohesive energies are pretty good;
LDA tends to overbind a system
(whereas HF tends to underbind)

Bond lengths are good, tend to be
underestimated by 1-2%

Good for geometries, vibrations, etc.
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Structures of highly correlated
systems (transition metals, FeO, NiO,
predicts the non-magnetic phase of
iron to be ground state)

Doesn’t describe weak interactions
well.

Makes hydrogen bonds stronger than
they should be.

Band gaps (shape and position is
pretty good, but will underestimate
gaps by roughly a factor of two; will
predict metallic structure for some
semiconductors)



Local Density Approximation

One place where LDA performs poorly is in the calculation of excited states.
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Beyond LDA - GGA

The most common method for improving upon the simple LDA is to use
gradient corrected “non-local” functionals.

These GGA functionals depend on both the value of the density at each point
in space as well as the gradient of the density.

The two most popular GGA’s are the PBE functional and the BLYP functional
(the acronyms refer to the authors - Perdew and Becke being the primary
ones).

In some GGA'’s, empirical-type fits are introduced, such as in BLYP where

the one parameter is fit to the exact exchange Hartree-Fock energies for
noble gas atoms.
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Beyond LDA

Recently, so-called “hybrid” functionals have gained in popularity.

These functionals attempt to add correlation energy derived from DFT to the
Hartree-Fock energy which has the exchange contribution exact.

However, a true “exact exchange” DFT is actually too hard to do (for the
moment), so presently hybrid functionals do a kind of mixture of exact
exchange.

In this way, the exchange-correlation functional is written as a sum of terms,
some of which we had before, one of which is the “exact” exchange from a
slater determinant of Kohn-Sham orbitals, and two more of which are fit to
experimental data (precisely, fit to 56 binding energies, 42 ionization
potentials, 8 proton affinities, and total atomic energies for the second-row
elements).

This is the B3LYP functional and, even though it’s kind of empirical, it is the
best “ab initio” DFT method in terms of overall performance.
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Modeling Solids

A number of approaches are used for studying solid systems.

WEe'll discuss a couple of these here, for example, the band theory approach vs.
the free-electron model.

Band Theory
» Atomic orbitals are combined to give the equivalent of molecular orbitals.
» Based on the assumption that the effect of orbital overlap is to modulate
but not change completely the initial atomic levels.
» Good approach for insulators and transition metals

Nearly Free-Electron Theory

 Electrons are free particles whose motion is modulated by the presence of
a lattice

» Good for metals where there is large overlap among valence orbitals
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Band Theory

Band theory begins from an atomic orbital picture.

If we start from a single atom and then add more and more, the energy levels
merge to give what is essentially a continuous band of energy levels.

Electron band overlap in metallic elements

Significant leap required o Overlap permits
for an electron to move  Shorter leap electrons to freely
to the next higher level required drift between bands
3p —3p
A 3p
A
Overlap
e — 3s
3s —— 3s
Single atom ~ Five atoms Multitudes of atoms
in close proximity in close proximity

http://www.allaboutcircuits.com/vol_3/chpt_2/3.html

An even simpler way to get a metal is to start with atom species that only have 1
valence electron, say Na. Then the band is by default half-filled and the
electrons are very mobile (easy to excite, etc).
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Metal, Semiconductor, Insulator

The energy gap E between the conduction band and the valence band (LUMO
and HOMO in a molecule) determines whether the system is a metal,
semiconductor, or insulator.

In metals, Eg is zero, and a significant
amount of electrons are thermally excited
into empty levels.

Energy

In semiconductors, Eg is small, typically Conductor
on the order of kT, so that excitation
between bands can take place at room
temperature.

Energy

Semiconductor

Energy

. =Vacant states

In insulators, E is large so exciting an
.=Dccupied sites

electron from the valence to conduction
band requires considerable energy. Insulator

&1 335 CHF

http://www.chemistry.adelaide.edu.au/external/soc-rel/content/bands.htm
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Aside - Reciprocal Lattice & Brillouin Zone

Associated with each real space lattice, there exists something we call a
reciprocal lattice.

The reciprocal lattice is the set of wavevectors which are commensurate with the
real space lattice.

It is defined by a set of vectors a*, b*, and ¢* such that a* is perpendicular to b
and c¢ of the Bravais lattice, and the product a* x a is 1.
_ R bxc
In particular, a =——
a‘bxc

L .

L ]
_>
.
.
BCC FCC

bcc fcc
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Aside - Reciprocal Lattice & Brillouin Zone

Reciprocal lattice vectors have some special properties that are of particular
value for solid-state electronic structure calculations.

Remember that we usually write the reciprocal lattice vector as:
G =2mmna’ +2mwmc’ +2moc
We added the 2xt simply for convenience, and the n, m, o, are integers.
Now consider the behavior of the function exp(iG-r):
exp(iG 1) = exp[i(ZJma* +2mme’ +2moc ) (ca + b + yc)]

= expli(2mmna + 2amp + 270y) ]

= cosQana + 2amp + 2mwoy) + isin(2ano + 2amp + 2moy)
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Aside - Reciprocal Lattice & Brillouin Zone

exp(iG - r) =cosQana + 2amp + 2a0y) + isin(2ana + 2amf + 2mwo0y)

As r is varied, the coefficients of the lattice vectors (a, 3, y) change between 0
and 1 and the value of the function exp(iG-r) changes too.

However, since n, m, and o are integral, the function exp(iG-r) will always vary
with the periodicity of the real-space lattice.

A couple of interesting observations of this function:

1) If we were to write a function as a Fourier series of terms from exp(iG-r)
the resulting series will be periodic on the real lattice.

2) These are called planewaves.

3) Such exponential functions represent wavefunctions for a free particle.
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Bloch Theorem

The periodicity of the lattice in a solid means that the values of a function (e.g.,
density) will be identical at equivalent points on the lattice.

The wavefunction, on the other hand, is periodic but only when multiplied by a
phase factor.

This is known as Bloch’s theorem. For a 1-D periodic system with a lattice
constant of a, it reads:

@' (x+a)=e"g"(x)

The label k for the wavefunction can be considered an index. There are as many
values of k as there are unit cells in the system.
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Bloch Theorem

Any overall wavefunction we come up with for our solid should meet the Bloch
requirement.

Suppose we have a certain type of orbital in our lattice, labeled y, where the nth
orbital is located at position x=na.

Then a linear combination of these orbitals that also satisfies Bloch’s theorem

would be: . o
o =Yy,
n
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Periodicity and Bloch’s Theorem

qgk _ Eeiknaxn

At k=0, we would have:

O =N K o Kt Xt X F

At k=rt/a, all the sine terms (imaginary ones) would be zero, and we’d have
cosine terms that can be expressed as (-1)":

P =N (D X o= X+ K= X+

These limits - k= 0 and k=mt/a - correspond to the lowest and highest-energy
wavefunctions.

The energy varies in a cosine-like manner in between.
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Band Structure

The graph of energy versus k is called the band structure.

<
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m/a m/a
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This variation in energy depends on the type of orbital that was used to construct
the wavefunction.

For a 1-D lattice, as in this example, the bandwidth (difference in energy

between the highest and lowest levels in the band) is determined by the distance
between the atoms.
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Band Structure

<

0 | k 0 I k
T/a Tt/a

Yi=0=X0+ 1+ Y2+ %3 ...
OOOOOO Wk=nta=xo—X1+X2—%3 --.

As we increase the number of dimensions, the band structure becomes more
and more complex.

Note that for more than 1 dimension, k becomes a vector, known as the
wavevector (having components k,, k,, for example in 2-D).
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