Quiz (2/20/08, Chpt 3, ECB)

1. A chemical process where there is a net gain of electrons is called reduction . A chemical process where there is a net loss of electrons is called \qquad .
2. Enzymes are catalysts, they often lower__ the free energy of a reaction by favoring a transition state.
3. This nucleotide cofactor prominently featured as an electron carriers are \qquad and \qquad .
4. This is the constant at which an enzyme is operating at half of its maximum speed. Km, Michalis-Menten constant
5. The maximum number of catalytic cycles an enzyme can perform per unit time is called the Turnover rate.

FIONA

$\underline{\text { Fluorescence }} \underline{\text { Imaging with }} \underline{O}$ ne $\underline{\text { Nanometer }} \underline{\text { Accuracy }}$ ($1.5 \mathrm{~nm}, 1-500 \mathrm{msec}$)

Techniques needed

Specificity to look at heads
Nanometer spatial localization
Second temporal resolution
Single Molecule sensitivity Single Molecule Photostability

How to get nanometer localization with visible photons?

Imaging Single Molecules with very good S/N

Total Internal Reflection Microscopy

$$
\left.d_{p}=(\lambda / 4 \pi)\left[n_{1}{ }^{2} \sin ^{2} \theta_{\mathrm{i}}\right)-\mathrm{n}^{2}{ }_{2}\right]^{-1 / 2}
$$

For water ($\mathrm{n}=1.33$) to air ($\mathrm{n}=1.0$): what is TIR angle?

For glass ($n=1.5$), water ($n=1.33$):
what is TIR angle? $>57^{\circ}$ what is penetration depth? $d_{p}=58 \mathrm{~nm}$
With $d_{p}=58 \mathrm{~nm}$, can excite sample and not much background.

Experimental Set-up for TIR (2 set-ups)

Wide-field, Prism-type, TIR Microscope

Wide-field
Objective-TIR

In one case, sample is "upside-down." Does this make a difference? No!

Diffraction limited spot

Width of $\lambda / 2 \approx 250 \mathrm{~nm}$
Accuracy of Center = width/ S-N

Enough photons (signal to noise)...Center determined to $\boldsymbol{\sim} \mathbf{1 . 3} \mathbf{n m}$
Dye last 5-10x longer -- typically $\sim 30 \mathrm{sec}-1 \mathrm{~min}$. (up to 4 min)

How well can you localize? What does it depend on? (3 things)

1. \# of Photons Detected (N)
2. Pixel size of Detector (a)
3. Noise (Background) of Detector (b)
(includes background fluorescence and detector noise)

$$
\sigma_{\mu_{i}}=\sqrt{\left(\frac{s_{i}^{2}}{N}+\frac{a^{2} / 12}{N}+\frac{8 \pi s_{i}^{4} b^{2}}{a^{2} N^{2}}\right)}
$$

Experimental Setup: Imaging Single Molecules
 Cy3-DNA Immobilized on coverslip

DNA Sample

In $8 \mathrm{~nm}, 16 \mathrm{~nm}, 37 \mathrm{~nm}$ increments

Data: Model System: 30 nm Artificial Steps

12 nm steps

$\approx 8 \mathrm{~nm}$ steps

A Single Myosin V moving

[ATP] = 300 nM (Low)
86 nm pixel
37 nm or 74 nm ?

$52-23 \mathrm{~nm}$ steps

Class evaluation

1. What was the most interesting thing you learned in class today?
2. What are you confused about?
3. Related to today's subject, what would you like to know more about?
4. Any helpful comments.

Answer, and turn in at the end of class.

