How Ion Channels Move to Create Action Potentials

Nerve cells contain ion channels
Opening/closing of (Na, K) ion channels lead to
Action Potential – electrical wave.

How does action potential occur?

Voltage dependence of on/off transitions.

(Can measure by ensemble or single-channels)

Suggests model where 2 states that differ in energy by qV Where q is about 13e, or 13e/4 per S1-S4 sub-unit; V= -80mV. q is part of channel—gating current, not ionic current!

Do ion channels open gradually or all or nothing?

How does gate spontaneously shut-off? How fast?

Nerve Impulse propagate, not spread, because Na⁺ spontaneously shut-off.

What shuts off channel?

Na channels shut off in a msec i.e. why you don't have spasms i.e. why action potential travels rather than just spreads. Why you can have repetitive firings of nerve.

The Ball and Chain model Depotarization Inactivation Armstrong & Bezanilla, 1977 Cut off ball and chain, and no (fast) inactivation. Wild type Membrane current Deletion mutant Mutant + peptide Time after depolarization (ms)

Zagotta, Hoshi, Aldrich, 1990

Structure of Pore-Domain (S5-S6) is known

(KvAP, Kv1.2... all yield the same structure)

Explains ion selectivity $(K^+ > Na^+)$ and rapid ion flux.

Pore figure adapted from Jiang, Y. et al. *Nature* **417**, 523-6. (2002)

Excellent agreement between LRET and Crystallography

But how S4 (and S1-S3) move, remain controversial.

Crystal Structure of S1-S6 Ion Channel Nobel Prize for Rod MacKinnon, 2006

S1-S4 Voltage Sensor Lies on the Outside of S5/S6

But...

Channel has been crystallized in only one state. There is no crystal structure of a channel in the open and closed state. Also, there were some serious problems with some (all?) states.

Need alternative techniques...lower resolution but can tell about channel in a more realistic setting.

3 Models for how S4 moves

New model of how voltage sensor moves to turn channel on/off (gated by voltage)

c) Helix: Twist and Rotation

What can fluorescence tell us about Shaker K⁺ channel opening/closing?

Shaker Channel– Can measure both Open & Closed States.

Inject mRNA in oocytes; wait 2-5 days; protein in membrane.

(Use mRNA where ionic current is blocked, if necessary).

www.mpibp-frankfurt.mpg.de/schwarz/oocytes.html

Energy transfer: What is it? (review)

E: Energy transfer efficiency for FRET

How to measure? Where to put probes?

Label Channel with different dyes

Depending on how close dyes are,

get different colors, lifetimes

As shape changes, get different colors

Problems with oocytes

- 1. Tremendous amount of autofluorescence
- 2. Donor only and acceptor only plus desired donor-acceptor only

Answer: Luminescence Resoance Energy Transfer (LRET).

- 1. Donor has long lifetime— gets away from autofluorescence
 - 2. Can isolate donor-acceptor complex.

Luminescent Chelates

Can see D-A even if incomplete labeling: Donly, A-only.

Example of LRET

$$E = \frac{1}{1 + (\frac{R}{R_o})^6} = 1 - \frac{\tau_{DA}}{\tau_D} = \frac{I_A}{I_{DA} + I_A}$$

Shaker Potassium Channel

-60 mV (resting, closed) 0 mV (active, open)

S4: Geometry & data of Shaker channel

Cha, Nature, 1999

Two exponential= two-distances

Voltage dependent movement

LRET is tracking Gating charge movement

Three neighboring residues, 351, 352, 352

Move in different directions

- S351C gets closer
- S352 C unchanged
- N353C get farther

Red residue (S351C) initially far, then close.

Blue residue unchanged.

Black residue initially close, then far.

Shaker voltage sensor twists, does not translate too much.

How it all adds up: Shaker voltage sensor twists, does not translate too much.

Class evaluation

- 1. What was the most interesting thing you learned in class today?
- 2. What are you confused about?
- 3. Related to today's subject, what would you like to know more about?
- 4. Any helpful comments.

Answer, and turn in at the end of class.