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Solids

A number of approaches are used for studying solid systems. 

We’ll discuss a couple of these here, for example, the band theory approach vs. 
the free-electron model. 

Band Theory 
• Atomic orbitals are combined to give the equivalent of molecular orbitals. 
• Based on the assumption that the effect of orbital overlap is to modulate 

but not change completely the initial atomic levels. 
• Good approach for insulators and transition metals 

Nearly Free-Electron Theory 
• Electrons are free particles whose motion is modulated by the presence of 

a lattice 
• Good for metals where there is large overlap among valence orbitals 
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Band Theory

Band theory begins from an atomic orbital picture.  

If we start from a single atom and then add more and more, the energy levels 
merge to give what is essentially a continuous band of energy levels. 

http://www.allaboutcircuits.com/vol_3/chpt_2/3.html 

An even simpler way to get a metal is to start with atom species that only have 1 
valence electron, say Na. Then the band is by default half-filled and the 
electrons are very mobile (easy to excite, etc). 
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Metal, Semiconductor, Insulator

The energy gap Eg between the conduction band and the valence band (LUMO 
and HOMO in a molecule) determines whether the system is a metal, 
semiconductor, or insulator. 

http://www.chemistry.adelaide.edu.au/external/soc-rel/content/bands.htm 

In metals, Eg is zero, and a significant 
amount of electrons are thermally excited 
into empty levels. 

In semiconductors, Eg is small, typically 
on the order of kBT, so that excitation 
between bands can take place at room 
temperature. 

In insulators, Eg is large so exciting an 
electron from the valence to conduction 
band requires considerable energy. 
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Periodicity

The periodicity of the lattice in a solid means that the values of a function (e.g., 
density) will be identical at equivalent points on the lattice. 

The wavefunction, on the other hand, is periodic but only when multiplied by a 
phase factor. 

This is known as Bloch’s theorem. For a 1-D periodic system with a lattice 
constant of a, it reads: 

€ 

ϕ k (x + a) = eikaϕ k (x)

The label k for the wavefunction can be considered an index.  

There are as many values of k as there are atoms in the lattice. 

By the way, what are we talking about? 

Let’s take a step back. 
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Lattices

The first thing one must do for a solid system is to define the unit cell. 

This is nothing more than our usual periodic boundary conditions. However, thus 
far we have stuck with a simple cubic unit cell. 

Now that we’re discussing solids, we need to have a little more freedom in how 
we define it. 

The simplest way is to define the unit cell as a parallelepiped that is 
characterized by three vectors a, b, c, and the angles between them. 

There are 14 different types of basic unit cells, called Bravais lattices. 

The lattice itself can have a particular symmetry (i.e., cubic), and the atoms 
within the cell can have some symmetry as well. 

The combination of symmetry elements in the crystal is known as the space 
group. (There are 230 different space groups). 
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Bravais

The most common Bravais lattices are 
the cubic ones (simple, body-centered, 
and face-centered) plus the hexagonal 
close-packed arrangement. 

These are the most common simply 
because so many crystalline materials in 
nature fall into one of these kinds of 
lattices. 

Why are these lattices 
named after Auguste Bravais 
(1811-1863)? 
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Reciprocal Lattice

The reciprocal lattice is defined by a set of vectors a*, b*, and c* such that a* is 
perpendicular to b and c of the Bravais lattice, and the product a* x a is 1. 

In particular,  

€ 

a* =
b× c
a ⋅b× c

And b* and c* are defined in a similar manner. 

Note that the denominator in each case is equal to the volume of the unit cell. 

Also, note the units. 

The units being 1/length gives rise to the term “reciprocal lattice” or “reciprocal 
space”. 

These are the vectors used in x-ray crystallography. 

The reciprocal lattice vectors, often called G, define a unit cell in reciprocal space 
known as the primitive cell or the “Wigner-Seitz” cell or the “1st Brillouin zone”. 
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Brillouin

Leon Billouin (1854-1948) - another French dude - studied the close packing of 
structures in reciprocal space. 

€ 

a* =
b× c
a ⋅b× c
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Bragg

If a wave impinges on a crystal - regardless of whether it is an X-ray, an electron, 
or neutron "wave" - its reflection must obey the Bragg condition. 

This means that the wave will be reflected at a particular set of lattice “planes” 
characterized by its reciprocal lattice vector G only if the Bragg condition is 
met. (Derived by Sir W.H. Bragg and his son Sir W.L. Bragg in 1913). 

Let the wave vector of the incoming wave be k, the wave vector of the reflected 
wave is k'.  

The Bragg condition correlates the three vectors involved - k, k', and g - in the 
simplest possible form: k - k' = g 

If the Bragg condition is not met, then the 
incoming wave just moves through the 
crystal and emerges on the other side. 

Both father and son Bragg won the Nobel 
prize in 1915 for their condition. 
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Reciprocal Lattice Vectors

Reciprocal lattice vectors have some special properties that are of particular 
value for solid-state electronic structure calculations. 

Remember that we usually write the reciprocal lattice vector as: 

€ 

G = 2πna* + 2πmc* + 2πoc*

We added the 2π simply for convenience, and the n, m, o, are integers. 

Now consider the behavior of the function exp(iG⋅r): 

€ 

exp(iG ⋅ r) = exp i(2πna* + 2πmc* + 2πoc*) ⋅ (αa + βb+ γc)[ ]
= exp i(2πnα + 2πmβ + 2πoγ)[ ]
= cos(2πnα + 2πmβ + 2πoγ) + isin(2πnα + 2πmβ + 2πoγ)
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Reciprocal Lattice Vectors

As r is varied, the coefficients of the lattice vectors (α, β, γ) change between 0 
and 1 and the value of the function exp(iG⋅r) changes too. 

However, since n, m, and o are integral, the function exp(iG⋅r) will always vary 
with the periodicity of the real-space lattice. 

A couple of interesting observations of this function: 

1)  If we were to write a function as a Fourier series of terms from exp(iG⋅r) 
the resulting series will be periodic on the real lattice. 

2)  These are called planewaves. 

3)  Such exponential functions represent wavefunctions for a free particle. 

€ 

exp(iG ⋅ r) = cos(2πnα + 2πmβ + 2πoγ) + isin(2πnα + 2πmβ + 2πoγ)
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Periodicity

Ok, now where were we? 

Yes, Bloch’s theorem. 

For a 1-D periodic system with a lattice constant of a, it reads: 

€ 

ϕ k (x + a) = eikaϕ k (x)

Any overall wavefunction we come up with for our solid should meet the Bloch 
requirement. 

Suppose we have a certain type of orbital in our lattice, labelled χn where the nth 
orbital is located at position x=na. 

Then a linear combination of these orbitals that also satisfies Bloch’s theorem 
would be: 

€ 

ϕ k = eiknaχn
n
∑
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Periodicity and Blochʼs Theorem

At k=0, we would have: 

€ 

ϕ k = eiknaχn
n
∑

  

€ 

ϕ k= 0 = χn =
n
∑ χ0 + χ1 + χ2 + χ3 +L

At k=π/a, all the sine terms (imaginary ones) would be zero, and we’d have 
cosine terms that can be expressed as (-1)n: 

  

€ 

ϕ k= π / a = (−1)n χn =
n
∑ χ0 − χ1 + χ2 − χ3 +L

These limits - k= 0 and k=π/a - correspond to the lowest and highest-energy 
wavefunctions. 

The energy varies in a cosine-like manner in between. 
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Band Structure

The graph of energy versus k is called the band structure. 

This variation in energy depends on the type of orbital that was used to construct 
the wavefunction. 

For a 1-D lattice, as in this example, the bandwidth (difference in energy 
between the highest and lowest levels in the band) is determined by the distance 
between the atoms. 
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Band Structure

As we increase the number of dimensions, the band structure becomes more 
and more complex. 

Note that for more than 1 dimension, k becomes a vector, known as the 
wavevector (having components kx, ky, for example in 2-D). 

In calculations of solids, we restrict the values of k to one cell in the reciprocal 
space - usually in the 1st Brillouin zone. 
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Band Structure

Then, energy is usually plotted as a function of k along certain lines of symmetry 
within the first Brillouin zone.  

For example, here is a band structure for a 2-D square lattice of hydrogen 
atoms. 

In this case, we took a “tour” of reciprocal space by varying k from (0,0) to (π /a,
0) to (π/a, π/a) and then back to (0,0).  

Along the way, the energy changes and that is what is plotted in a band 
structure. Greek symbols are used to show certain high-symmetry points of k. 
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Band Structure

In 3-D the Brillouin zones are more complicated, but the idea is the same. 

For example, here is the band structure for silicon in the diamond structure. 

Some interesting things to note: 
• There is a lot of information in these kinds of plots. 
• The band gap can be either direct or indirect. 
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Nearly Free-electron Approximation

Here are some more band structures* 

*Atomic and Electronic Structure of Solids, E. Kaxiras, Cambridge University Press (2003). 
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Nearly Free-electron Approximation

For some systems, it is more useful to consider the valence electrons as free 
particles whose motion is modulated by the presence of the lattice. 

In this case, we start from the Schrodinger equation for a free particle in 1-D 
infitely large box: 

  

€ 

d2

dx 2
ψ = −

2mE
h2

 

 
 

 

 
 ψ

Solutions to this equation look like: 

  

€ 

ψ = Cexp(ikx)
E = (h2k 2) /2m

And energy is related to momentum, so one could write: 

  

€ 

ψ = Cexp(±ipx /h)

Note that the parameter k has units of reciprocal length. 
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Nearly Free-electron Approximation

When we consider a periodic system as opposed to an infinite box, what 
changes? 

The wavefunction must now satisfy Bloch’s theorem. 

Remember the wavevector k from Bloch’s theorem? It plays the same role here, 
with one important difference. 

For a free particle the wave vector is directly related to the momentum, k=p/
(hbar). 

This not the case for a “Bloch particle” due to the presence of the external 
potential (i.e., the nuclei). 

However, it is convenient to consider (hbar)k as analogous to the momentum 
and it is often referred to as the crystal momentum. 
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Nearly Free-electron Approximation

Remember that the wave vector k in Bloch’s theorem can be considered as a 
point in reciprocal space defined by the reciprocal lattice vectors. 

A wavefunction is usually written in the following form: 

Where u(r) is a function that is periodic on the lattice. 

Also remember that we can construct a periodic function as a Fourier series 
expansion of plane waves: 

€ 

ψ k (r) = exp(ik ⋅ r)uk (r)

€ 

uk (r) = cG
k exp(iG ⋅ r)

G
∑

In a simple example, G=one of the reciprocal lattice vectors, say a. 

Then, the exponent corresponds to a wave traveling perpendicular to the real-
space axes of b and c with a wavelength that just fits in the unit cell. 
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Nearly Free-electron Approximation

One can also introduce an external potential (i.e., the crystal lattice): 

When this form of potential is incorporated into the Schrodinger equation, one 
can derive the following equation* 

In the free-particle limit, setting all Fourier coefficients of U to zero, we recover 
the wavefunction and energies of a free particle. 

Each equation for a given value of k can be written for a different G which gives 
rise to a solution - labeled with a band index n. 

There are as many values of n as there are reciprocal lattice vectors G. 
* See, e.g., Ashcroft and Mermin 

€ 

U(r) = UG exp(iG ⋅ r)
G
∑

  

€ 

h2
2m

k + G 2
− E

 

 
 

 

 
 cG

k + U ′ G +Gc ′ G 
k

′ G 
∑ = 0
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Nearly Free-electron Approximation

The band structure of a solid is then simply an understanding of the variation in 
both n and k. 

To derive the energy diagram, we start with a reciprocal lattice vector G, and 
vary k over the first Brillouin zone. 
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Nearly Free-electron Approximation

For a free particle in 1-D, the energy varies 
as a function of k, as we have described: 

And yet, as soon as we “turn 
on” the potential of the 
crystal lattice, gaps open up: 

Gavi, why is this the case? 
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Nearly Free-electron Approximation

Yes, it is indeed because, even in simple 1-D lattice there is a degeneracy 
due to different reciprocal lattice vectors at k=0 and k=π/a.  

But, Gavi, why does the potential perturb these energy levels in such a way 
to lift the degeneracy and create a gap? 

That’s right! The Bragg reflection. 

The Bragg condition for this system states that wavelike solutions to the 
Schrodinger equation do not exist for k=0 and k=π/a.  
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Nearly Free-electron Approximation

The energy gap is associated with the fact that at the Brillouin zone 
boundaries, a wave in the crystal is a standing wave. 

And now the degeneracy comes into play, since we have two possible 
standing waves: 

One standing wave piles electrons on the ions and the other in between. 
These have different energies, which creates the gap. 
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Nearly Free-electron Approximation

Now the Schrodinger equation is solved in the presence of the lattice, and 
we obtain the band structure. 

There are different ways to view the same information, for example in the 
extended or reduced zone scheme: 
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