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Updates 

Homework Assignment: Hartree-Fock and DFT on 
molecules via GAMESS and SIESTA.  Due: April 10th 

Class Projects:  Abstract/Proposal for your class 
project is due on April 10th.  (one or two paragraphs) 
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From last time: Brillouin Zone, Bloch Theorem 

Associated with each real space lattice 
{R}, there exists a reciprocal lattice {G}. 

The Wigner-Seitz cell of the reciprocal 
lattice is the first Brillouin zone. 

Bloch’s theorem is satisfied by a linear 
combination of planewaves, in which 
we write: 

According to Bloch’s theorem, on a 
periodic lattice, the wavefunction must 
satisfy. 

“k” can be thought of as an index for 
all the states.  All values of k yielding 
distinct states lie within the first BZ.  
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Band Structure 

The graph of energy versus k is called the band structure. 

This variation in energy depends on the type of orbital that was used to construct 
the wavefunction. 

For a 1-D lattice, as in this example, the bandwidth (difference in energy 
between the highest and lowest levels in the band) is determined by the distance 
between the atoms. 

bandwidth 
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Band Structure 

As we increase the number of dimensions, the band structure becomes more 
and more complex. 

Note that for more than 1 dimension, k becomes a vector, known as the 
wavevector (having components kx, ky, for example in 2-D). 
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Band Structure 

Then, energy is usually plotted as a function of k along certain lines of symmetry 
within the first Brillouin zone.  

For example, here is a band structure for a 2-D square lattice of hydrogen 
atoms. 

In this case, we took a “tour” of reciprocal space by varying k from (0,0) to (π /a,
0) to (π/a, π/a) and then back to (0,0).  

Along the way, the energy changes and that is what is plotted in a band 
structure. Greek symbols are used to show certain high-symmetry points of k. 
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Band Structure 

In 3-D the Brillouin zones are more complicated, but the idea is the same. 

For example, here is the band structure for silicon in the diamond structure. 

Some interesting things to note: 
• There is a lot of information in these kinds of plots. 
• The band gap can be either direct or indirect. 
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Bandstructure for Common Semiconductors 
Here are some more band structures* 

*Atomic and Electronic Structure of Solids, E. Kaxiras, Cambridge University Press (2003). 



Jeffrey C. Grossman & Elif Ertekin, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley 

Density of States 

•  The “density of states” is a measure of the number of states in a given 
energy interval that are available to be occupied. 

•  The density of states can be computed from the band structure. 
•  Here are some examples for metals and semi-conductors: 

bcc iron 

diamond 
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In-Class Simulation: Task 1 

•  Optimize the bulk silicon (diamond structure) within both LDA and GGA, 
choosing two basis sets for each. 

•  How many k-points are needed for convergence for these runs?  
•  Now, choose a basis set and an xc functional.  Make a plot of cohesive 

energy vs. lattice constant for both bulk Si and bulk C in diamond structure.  
(You will need to vary the lattice constant now.) 

•  Use these plots to compute the bulk modulus for these two materials.  
Compare your result to experiment. 

Structure Optimization for Semi-conductors 
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In-Class Simulation: Task 2 

•  Now, choose NaCl and optimize the structure using a basis and xc 
functional of your choice.   

•  Shift one of the atoms in the unit cell from it’s equilibrium position, and 
optimize again.  Look at the plots showing the energy at each atomic 
iteration.   

•  Does the energy converge properly (and the atom move back to the right 
position) over the course of the run?  

Structure Optimization for Rocksalt 
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In-Class Simulation: Task 3 

•  Pick a basis and optimize the fcc and bcc iron structures in both LDA and 
GGA.  

•  For metals, how many k-points are needed for convergence compared to 
semiconductors?   

•  Does LDA or GGA get the ground state right? 

Structure Optimization for Metals 
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In-Class Simulation: Task 4 

•  Find the band structure and the density of states for C, Si, Ge, GaAs.   
•  Compare the band gap to experiment.   
•  Which are direct/indirect? 

•  Choose bcc iron, but make the lattice constant large enough so that the 
atoms do not interact.  Plot the density of states and identify the peaks. 

•  Now, start slowly shrinking the lattice constant step by step.  Observe how 
the density of state changes as the atoms get closer together.  What 
happens to the peaks?  Which electrons are responsible for bonding?  

Band Structure and Density of States 


