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The mean-field approximation

We replace a bunch of interacting particles with a set of
solitary particles in an effective field

Amazingly it works most of the time in quantum mechanics:
reverse lottery
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The mean-field approximation II

Reasons to go beyond mean-field
Case in point: FeO, important in Earth’s core

If we treat it with DFT (any mainstream functional):

1) The lowest energy structure in DFT doesn’t exist in reality

2) Even if we fix the structure to the experimental one, DFT
predicts a metal when FeO is an insulator

3) Between the two phases that do exist, there is no predicted
phase transition  (one is always more stable)
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Variational method

Want to do something a bit more systematically improvable.

Suppose we want to find the ground state wave function for a
given Hamiltonian.  We can use the variational method:

Ground state has the lowest energy of all the states, so as our
parameter set becomes complete, we approach it.

This is like Hartree-Fock and the post-HF methods, but today we’re
going to change the parameter set somewhat.
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What parameterization is efficient?
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Solved by 
Hartree-Fock

Contains an
electron-electron
distance!

Hartree-Fock:   Single determinant of one-particle orbitals

Coupled cluster/Configuration interaction: Many determinants
of one-particle orbitals

This converges very slowly.  The Hamiltonian tells us why..

The determinant expansions don’t contain an electron-
electron distance, so they get at the interaction in a
roundabout way.
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What kind of representation would be more
efficient?

We’d like a term that contains an electron-electron distance.
But then the we can’t separate the 3N-dimensional integral.
We’ll use Monte Carlo to evaluate that integral.

But just to show you what one can do..

10

~40,000

Number of variational parametersCorrelation
energy
(Hartrees)

0.200VMC

0.193CCSDMethane
(CH4)

10

~1,000,000

0.375(1)VMC

0.404CCSDEthane
(C2H6)

10x faster

5x slower
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Ok, how did we do that?

The VMC wave function that I used looks like this

The u function (Jastrow factor) depends on the electron-
electron distances explicitly, which is the next term in the
Hamiltonian.

Let’s look at what that does to the electrons..

! 
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Hartree-Fock Correlation 



Jeffrey C. Grossman & Elif Ertekin, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

The leading physical effect of correlation

We look at the radial distribution function between electrons:
CH4

Hartree-Fock:
Only Pauli exclusion
Like spins repulsed
Unlike spins ignore each other

Spin like

Spin unlike

VMC (Slater-Jastrow):
Like spins similar to HF
Unlike spins repulse each otherSpin like

Spin unlike
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The effect of correlation on bonding

About half of the binding energy of molecules is from the
electron repulsion.

Nucleus

Electrons

When the atoms are apart, their electrons must stay near
the nucleus and near each other.

When atoms are covalently bound, the electrons have more room
to avoid each other while still remaining near a nucleus.



Jeffrey C. Grossman & Elif Ertekin, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

The story so far

By introducing an electron-electron term in our variational
wave function, we can get close to the ground state without
using many parameters.

The major effect of this term is to push electrons of unlike
spins away from each other--repulsion due to the Coulomb
interaction.

This is a compact many-body wave function that scales well
with system size.

We still haven’t talked much about how to calculate anything
efficiently--that’s where the Monte Carlo comes in.
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Monte Carlo: reminder

Remember the awesome lecture Elif gave on Monte Carlo?
We wanted to evaluate

We do this huge integral by sampling the probability
distribution function and averaging A.
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Quantum Monte Carlo

We want to evaluate this integral

This is a probability distribution function
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We can sample it using the Metropolis algorithm!  Just need to
rearrange the integral:
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The story so far

Interpreted the square of the wave function as a probability
distribution function

One can sample this pdf, just like classical Monte Carlo

This lets us put in explicit electron-electron terms in the wave
function…which lets us quickly get close to the ground state.

Next up, optimizing the parameters.  Monte Carlo is noisy,
derivatives are difficult to take.  There are many ways; I’ll
show you one.
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The local energy

Our averaging quantity is called the local energy.

If the wave function is an eigenfunction of the Hamiltonian,
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So the local energy for the exact wave function is
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A constant independent of R!
We can optimize wave functions using this property.
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Optimizing the variance

CH4: 500 MC samples

Samples are kept fixed and
the variance is optimized

Average energy decreases
as the variance decreases

Fixed set of samples:
cancellation of much
statistical error

Why can’t we just optimize the energy in this way?  On a fixed
sample size, the average energy is unbounded from below, so
the optimizer finds weird parameter sets to find a minimum,
which don’t translate to accurate wave functions.
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Final variational quantum Monte Carlo
algorithm

1) Choose a parameter set

2) Generate Monte Carlo configurations

3) Optimize the variance on a fixed set of MC configurations

4) With the new parameters, use MC to evaluate properties of
the wave function like energy, radial distribution functions,
etc.

+Can use explicitly correlated wave functions (more than
just the Slater-Jastrow that I showed)
+Good scaling ~N3

-Biased by the choice of wave function
-Stochastic optimization
-Error bars!
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How VMC fits in the big picture

People rarely do VMC by itself, because with a little more effort,
we can do much better.

Next time, I’ll tell you about a much more powerful method
called diffusion Monte Carlo that is able to treat all electron
correlations.

I’ll give you some hints on this, just to think about before the
next class.
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Diffusion Monte Carlo preview

I mentioned that the variational guess biases the results--you
only get what you put in the wave function.

DMC does better by getting rid of the variational function--the
wave function is given by the distribution of Monte Carlo
samples.

We find some simple rules for moving Monte Carlo samples
that will sample the ground state--without finding the
functional representation.

For bosons, we can solve the quantum problem exactly within
stochastic errors, and for fermions, there is one major
approximation.
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Correlated wave functions in periodic
boundary conditions

Remember that Bloch’s theorem let us separate an infinite
solid into a real space part and a reciprocal space part

But the derivation was only for a single electron moving in a
periodic field--the mean field in DFT.

With correlated wave functions, we don’t have a mean field any
more..what happens, then?
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PBC’s continued

We make a repeating
cell of interacting
particles.

If the cell is too
small, the particles
can interact with
themselves

Notice also that the
distribution is
repeated

The PBC’s are just to
get rid of surfaces,
like in classical MD
calculations



Jeffrey C. Grossman & Elif Ertekin, NSE C242 & Phys C203, Spring 2008, U.C. Berkeley

Question and answer period

Let’s wait in uncomfortable silence until someone asks a
question.


