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PBC’s revisited

We make a repeating
cell of interacting
particles.

If the cell is too
small, the particles
can interact with
themselves

This is just like
classical molecular
dynamics
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Correlated wave functions in periodic
boundary conditions

This is a finite size effect, which is physical!

Bloch’s theorem and k-points, etc are very useful
approximations, but not what physically happens in a real
solid.

There is a soup of interacting particles.
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Last time in this class

We went over a way of putting correlation into a wave
function and optimizing it using Monte Carlo.

This correlation is responsible for about half the binding
energy of molecules and solids.

But this method (variational Monte Carlo) is limited by the
choice of variational wave function.
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Going beyond a variational guess

Guys, stochastic processes!

Remember that we’re limited by the form of our guess wave
function.

For a few dimensions, we can just use a grid.  But this scales
poorly with the number of dimensions.

To sample with 100 points in each direction:
1D: 100 points
2D: 10,000 points
3D: 1,000,000 points
4D: 100,000,000 points

And so on.  Since we’re often dealing with 100’s or 1000’s of
dimensions, this is obviously not a good strategy.
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Monte Carlo sampling

So what do we do when the dimensionality is too big for grids?
Monte Carlo

What we want to do is to find a way to guide our Monte Carlo
walkers to where the wave function is large.

The density of walkers will determine the magnitude of the
wave function.
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Brief digression: simulating diffusion

The diffusion equation:

This is an equation for the time evolution of a probability
function.

What does it do?! 

"p(x)

"t
= D

" 2p(x)

"x 2

When is the equation stationary?

If you start a bunch of diffusing particles “lumped up”, they’ll
tend to spread out

Can simulate this directly with a bunch of walkers or just use
the equation
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DMC strategy

General strategy: stochastically simulate a differential equation that
converges to the eigenstate

Equation:

Must propagate an entire function forward in time <=> distribution
of walkers

( , )
( ) ( , )

d R t
H E R t

dt

!
" = " !
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How our master equation leads us to
eigenfunctions

( , )
( ) ( , )

d R t
H E R t

dt

!
" = " !

H E! = !We want to get a function that satisfies:

I claim that this differential equation does it:

After some manipulations:

! 

"
1

#

d#(R,t)

dt
= E

L
(R) " E

! 

E
L
(R,t) =

H"(R,t)

"(R,t)

So if EL is a constant for a function, then the wave function will
increase/decrease evenly everywhere

Remember that a total normalization doesn’t matter for a wave
function.  We can set E so that it stays constant for convenience.
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The master equation II

So how does our equation go towards the eigenfunction?

t=0

 t=infinity

Note that

The time derivative is dependent only
on the curvature.

If the curvature is too big, it will be
decreased, too little, increased

How much curvature is determined
by the potential energy.

! 
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Story so far..

This is a differential equation for a function that pushes that
function towards an eigenfunction.

We didn’t specify which eigenfunction it is.

One can prove (by spectral expansion) that it’s the ground
(lowest energy) state.

Now we’re going to map this equation onto a population of
random walks, just like the diffusion equation <-> random
walkers relationship.
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Mapping the function onto a population of
walkers

! 

"
d#(R,t)

dt
= "

1

2
$
2
#(R,t) + (V (R) " E)#(R,t)

Diffusion Birth/death

•Generate walkers with a guess distribution

•Each time step:
•Take a random step (diffuse)
•A walker can either die, give birth, or
 just keep diffusing

•Keep following rules, and we find the
ground state!

•Works in an arbitrary number of
dimensions

t

Initial

Final
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What is the ground state?

So we have a method that automatically finds the exact ground
state for a given Hamiltonian in polynomial time!

This is the holy grail of quantum mechanics, this is wonderful!

But wait.  The Hamiltonian doesn’t contain the Pauli exclusion
principle.

It could apply to bosons, which can be in the same place.

Extra freedom => lower energy.! 

ˆ H = "
1

2
#2 "

Z
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Story so far..

We found rules for moving walkers that simulated our
differential equation

This is very much like the diffusion equation; there are just
birth and death processes

But our rules will go to the absolute ground state of the
Hamiltonian, which is not the one we want.
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The fixed-node approximation

One way to do this is to take a trial function that satisfies the
Pauli exclusion principle as a starting guess, and design our
rules so that we don’t break it.

Turns out one can do this by just not allowing the walkers to
cross a zero--we always have either “positive” or “negative”
walkers

This also allows us to treat excited states (approximately)
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Where does the fixed-node approximation fail?

Most of the time, the approximation is good.  Some intelligent
and young-looking person did some great work benchmarking
FN-DMC (look in JCP)

Let’s look at a classic case where it fails: Be atom.

HF trial nodes: ~85% of the correlation energy
Including the 2p orbitals: ~99% -- almost exact!

1s

2s
2p

Hartree-Fock
ground state

Almost the
same energy
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Things that I didn’t cover

Can use a trial function to increase the efficiency tremendously
by sampling only the changes from the guess.

There is always time discretization error.  You always should
extrapolate to zero time step, just like molecular dynamics.
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Algorithm summary

1) Perform Hartree-Fock or DFT to get initial wave function

2) Add Jastrow factor, optimize wave function

3) Using optimized wave function as a guide, perform
diffusion Monte Carlo for the most accurate results

In practical use, DMC is very automatic; you just choose
the time step and it goes to the fixed-node solution--very
few tweaking needed.

Good thing, because it’s pretty expensive.  Small time
steps and error bars make for substantial cost.
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Correlation energy

13 minutes

18 seconds

Time takenCorrelation
energy
(Hartrees)

0.240(1)DMC

0.193CCSDMethane
(CH4)

37 minutes

82 minutes

0.438(2)DMC

0.404CCSDEthane
(C2H6)

Always more of the correlation energy. Huge difference in
scaling and prefactor!
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What do we get?

Very accurate total energies

Large prefactor in the computational cost, but good scaling

Many observables such as densities, electron correlation holes
and more!

Good scaling on multiple processors (10,000 processors with
99% efficiency!)

Each state requires an additional calculation, so gaps are easy,
but whole band structures are hard.

Fixed-node approximation is usually good, but sometimes fails
for simple guesses.

Error bars make geometry optimization difficult.
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Where is this method used?

The question is often not whether a calculation can be done;
it’s how much you want to do it.

Places where it’s very useful:

1) Matter under extreme conditions (high pressure)

2) Superfluidity (4He)

3) Weak binding (Van der Waals, physabsorption)

4) Any cohesive/binding energy

Rule of thumb: When electron correlation is important or you
want to compare very different systems, DMC will be useful.
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Trial functions in the tool

Question and answer period 

• General form of wave function

– Slater determinant (Hartree-Fock)

– Two-body Jastrow

– Three-body Jastrow

• Live demo!

! 
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Final questions?

There will be a QMC homework given out on Thursday.  We’ll
cover some more of the specifics of the tool in the assignment.


