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Introduction to Phase-Field Methods
• Phase field methods are a class of relatively new

techniques (~20 years) for studying a variety of
phenomena:
– Phase transitions: solid-solid, solidification
– Thin-Film growth
– Coarsening/Ostwald Ripening processes

• Systems with multiple phases are described by the
introduction of new variables φ, which are similar to
order parameters
– φ is a constant (φ = 0 or φ = 1, etc.) in each bulk phase
– φ  varies smoothly between the interface region between the

phases
– Key: rather than a sharp interface that needs to be tracked, there

is a smooth transition region
• Well-suited for morphological evolutions described by

nonlinear PDE’s, which are solved numerically
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Pre-Phase Field Modeling
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Examples - Ostwald Ripening

Ostwald Ripening: large particles grow at the expense of small ones, driven by a
reduction in interfacial energy

Diffusional mass transfer from regions of high to regions of low curvature

Develop a set of equations governing the evolution of the particle size distribution.

Time evolution shows a reduction in particle density and an increase in average
particle size <R>

Useful for, e.g., size of precipitates in precipitation hardening, growth of
nanocrystals, etc.
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Examples - Ostwald Ripening

• Classical model of Ostwald Ripening is the Lifshitz-
Slyozov and Wagner (LSW) approach

• Modeled the evolution of infinitely-spaced, spherical
particles in a matrix
– i.e., limit of coarsening in a zero volume fraction limit

• Found a self-similar solution as         , which we call the
asymptotic limit
– Particle size distribution (PSD) is time-invariant when scaled by

the time-dependent average radius

• Limitations: low volume fraction limit, spherical non-
touching particles, mass transport by diffusion only, no
interfacial anisotropy, etc.
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Examples - Thin Film Growth

Frank-van der Merwe
(layer by layer)

Volmer-Weber
(island formation)

Stranski-Krastanov

• In lattice-mismatched heteroepitaxy, we often classify the types of
thin-film growth into three categories

• The type of growth that is observed for a given system depends on
the interplay between the interfacial energies and the strain energy
due to lattice mismatch
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Examples - Thin Film Growth
• In lattice-mismatched heteroepitaxy, we often classify the types of

thin-film growth into three categories
• The type of growth that is observed for a given system depends on

the interplay between the interfacial energies and the strain energy
due to lattice mismatch

Frank-van der Merwe
(layer by layer)

Volmer-Weber
(island formation)

Stranski-Krastanov

Occurs for systems where wetting occurs (low substrate-film and
film-surface energy, high substrate-surface energy) with low
lattice mismatch strain
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Examples - Thin Film Growth

Frank-van der Merwe
(layer by layer)

Volmer-Weber
(island formation)

Stranski-Krastanov

In non-wetting systems (large substrate-film energy, low
substrate-surface energy) results in island formation

• In lattice-mismatched heteroepitaxy, we often classify the types of
thin-film growth into three categories

• The type of growth that is observed for a given system depends on
the interplay between the interfacial energies and the strain energy
due to lattice mismatch
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Examples - Thin Film Growth
• In lattice-mismatched heteroepitaxy, we often classify the types of

thin-film growth into three categories
• The type of growth that is observed for a given system depends on

the interplay between the interfacial energies and the strain energy
due to lattice mismatch

Frank-van der Merwe
(layer by layer)

Volmer-Weber
(island formation)

Stranski-Krastanov

In wetting systems (low substrate-film energy, high substrate-
surface energy) for which the lattice mismatch strain is high
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Examples - Thin Film Growth
• In SK growth, a morphological instability occurs beyond some

critical thickness, resulting in island growth - “surface roughening”

After Eggleston, 2001.

region of stress-relief

region of localized
compression

overall effect of distortion: relieve some strain energy
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Examples - Thin Film Growth
• The critical thickness at which “surface roughening” occurs depends on

energetic competition:
– Roughening increases the surface area and hence the surface energy
– Roughening decreases the strain energy

• Undulations of the surface occur by migration of surface atoms driven by
gradients in chemical potential … hence the instability

• Roughening is usually described by a stability analysis

• The misfit-induced elastic strain is destabilizing for all wavelengths.
However, the increase in surface energy stabilizes the small wavelength
distortions … and there is a critical wavelength between these two regions

break roughening profile down into fourier
components - sum of waves of different
amplitudes

stability: will a given wave grow or decay?  If it grows, the surface is
unstable with respect to that mode.  If it decays, surface is stable.
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Examples - Thin Film Growth
• Two types of models:

– Energetic: predict the stability of various wavelengths
– Kinetic: consider the “dispersion relation”, or the relative growth rates for

different wavelengths
• Kinetic models must consider mass-transport mechanisms (surface

diffusion, bulk diffusion, evaporation/condensation, etc)
• Asaro-Tiller-Grinfeld: most famous kinetic model

critical
wavenumber

Fastest growing mode

ATG instability for surface-
diffusion dominated systems.

After Eggleston, 2001.
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Classical Approach

Shape changes of the interface governed by an evolution equation, which
gives the velocity of the interface normal to itself

- track explicitly the interface

- can be tricky for growth: instabilities are
prevalent

- alright for 1D, difficult for more complex
microstructures
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Some Motivation

Snowflakes, Wilson Bentley, circa 1902.

might want to go beyond linear stability analysis?
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Going Beyond
• Coarsening models are based on mean-field approaches

at the low volume fraction limit for spherical, isotropic,
non-touching particles in which diffusion is the dominant
mass-transport scheme

• Thin film growth models are based on linear stability
analysis - predict evolution at the onset of the instability

• We want a model for all of morphological evolution:
nucleation, coarsening, coalesence that can include
strain, anisotropy, etc.

• May not always be most natural to front track the
interface explicitly

• Requires the solution of non-linear PDE’s
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The Phase Field Approach
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Phase Field Basics
The phase field method is an extension of the diffuse interface models of
Ginzburg and Landau, Cahn and Hilliard, and Cahn and Allen (~ 45 years
old)

Basic idea: introduce a variable φ that is constant in bulk phases and
varies smoothly across the interface

The free energy is a functional of φ:
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Phase Field Approach
The free energy is a functional of φ:
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Cahn-Hilliard Evolution Equation

Imposing the constraint that the free energy functional F decrease
monotonically in time for conserved order parameter results in the
Cahn-Hilliard evolution equation:
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For example, for the double well potential I described earlier and for constant M
(uniform bulk diffusion), the Cahn-Hilliard evolution equation looks like:

Basic idea: evolve the C-H equations in time.  We can see phenomena such as
coalescence, amplitude of decay/growth of waves, etc.
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Cahn-Hilliard Evolution Equation
Generally, the C-H equation is nonlinear and we must use a numerical approach.
Initially, finite difference schemes were often used.

While not particularly efficient, they were more stable to discontinuities that can
arise from, e.g., highly anistropic interface energies, stress fields, etc.

Nowadays, more sophisticated approaches do exist - semi-implicit methods and
adaptive mesh, for instance.

For example, for the double well potential I described earlier and for constant M
(uniform bulk diffusion), the Cahn-Hilliard evolution equation looks like:
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Here is a steady state solution to this equation in one-dimension:
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The Interfacial Solution

δ is made smaller (sharpened) because f is non-zero for 0<φ<1 (i.e., due to W)

δ is made wider in order to reduce the interface energy from
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Summary

Phase field method is a diffuse interface approach to
modeling the microstructural and morphological
evolution of a multi-phase system

Microstructural evolution refers to the
compositional/structural inhomogeneities that arise in
order to reduce the total free energy

Can include phases and their interfaces, grains, domains
(magnetic, etc), electrostatic interactions, strain effects

We use a numerical approach to evolve the (usually
nonlinear) Cahn-Hilliard and Cahn-Allen (time-dependent
Ginzburg Landau) equations in time.
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Phase Field, More Generalized
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free energy Interface energy
for conserved
quantities

Interface energy
for non-conserved
quantities

Non-local part, long-range
interactions (elastic, dipole-
dipole, etc)

We can generalize the free energy functional to contain many variables
(conserved and non-conserved), long-range interactions, etc.  Anisotropy,
etc. can be accomodated
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Some Cool Examples
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Examples of Solidification

Movies showing solidification, dendritic growth, etc:
http://mse.mcmaster.ca/faculty/provatas/solid.html

finite element approach using an adaptive grid!

solidification in binary alloys!
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More Examples
These examples are from L.-Q. Chen, “Phase Field Models for

Microstructure Evolution”, Annu. Rev. Mater. Res., 2002

solidification

solid-solid
phase
transition
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More Examples
These examples are from L.-Q. Chen, “Phase Field Models for

Microstructure Evolution”, Annu. Rev. Mater. Res., 2002

grain growth

dislocation
structure evolution


