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1 Quantization Effectsin Nano-Devices

In the past, quantum effects have been known to dominateptration of resonant tunneling
diodes [1], quantum cascade lasers [2], etc. Tunnelimgughr the gate oxide [3], source to drain
tunneling and space-quantization effects are expected itagmetant in nano-scale MOSFETs and will
require solution of the one-dimensional (1D) Schrédinger-Poigsoblem. Solutions of the two-
dimensional (2D) Schrddinger-Poisson problem are needed, fonpéxafor describing the channel
charge in narrow-width MOSFETs. With regard to gatale tunneling, the one-electron effective-mass
approximation may not be sufficiently accurate abanitio calculations will most probably be needed.

Note that successful scaling of MOSFETSs towards shohannel lengths requires thinner gate
oxides and higher doping levels to achieve high drive curegrdaminimized short-channel effects [4,5].
For these nanometer devices it was demonstrated a longgionehat, as the oxide thickness is scaled to
10 nm and below, the total gate capacitance is smallertiigaoxide capacitance due to the comparable
values of the oxide and the inversion layer capacitancesF{gaee 1). As a consequence, the device

transconductance is degraded relative to the expectatitims taling theory [6].
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Figure 1. Equivalent circuit that shows the various coniiobstto the total gate capacitance in a MOS
capacitor. The effect of interface traps has been aiitt¢he present analysis. If included, it would lead

to an additional capacitance component in parallel tawersion layer and depletion layer capacitances.

The inversion layer capacitance was also identified agylibe main cause of the second-order thickness
dependence of MOSFET'B/-characteristics [7]. The finite inversion layer thicknegss estimated

experimentally by Hartstein and Albert [8]. The high levadlsubstrate doping, needed in nano-devices
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to prevent the punch-through effect, that lead to quasidwensional (Q2D) nature of the carrier
transport, were found responsible for the increasesiold voltage and decreased channel mobility, and
a simple analytical model that accounts for this éffegs proposed by van Dort and co-workers [9,10].
Later on, Vasileska and Ferry [11] confirmed these firglipg investigating the doping dependence of
the threshold voltage in MOS capacitors. The experimesdéd for the doping dependence of the

threshold voltage shift and our simulation results from Rdfl §re shown in Figure 2.
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Figure 2. SCHRED simulation data for the shift in theeshold voltage compared to the experimental

values provided by van Dort and co-workers.

These results clearly demonstrate the influence of quantiectsebn the operation of nano-scale
MOSFETSs in both the off- and the on-state. The two physidgins of the inversion layer capacitance,
due to the finite density of states and due to the fimtersion layer thickness, were demonstrated
experimentally by Takagi and Toriumi [12]. A computatidyatfficient three-subband model, that
predicts both the quantum-mechanical effects in thereleatversion layers and the electron distribution
within the inversion layer, was proposed and implememtidthe PICSEC simulator [13]. The influence
of the image and many-body exchange-correlation effects on thesimvdayer and the total gate
capacitance was studied by Vasilegkal. [14]. It was also pointed out that the depletion of thg-pol
silicon gates considerably affects the magnitude of tia gate capacitance [15].

The above examples outline the advances during the two decagseafch on the influence of
guantum-effects on the operation on nano-devices. The cmmtlissthat any state-of-the-art device

simulator must take into consideration the quantum-mechbnature of the carrier transport and the
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poly-depletion effects to correctly predict the device offd @n-state behavior. As noted by many of
these authors, to account for the quantum-mechanicaltsffene in principle has to solve the 2D/3D
Schrédinger-Poisson problem in conjunction with an appropmatsgort kernel. (For devices in which
velocity overshoot is strongly pronounced, minimum that onedeais to solve the Boltzmann transport

equation using the Ensemble Monte Carlo (EMC) technique.)

2. Quasi-2D Electron Gas

An important system where quantum effects have beeangds$ is a quasi-two-dimensional
electron gas (Q2DEG). There are two basic systems W& has been studied. As already noted, one
of them is Si MOSFET. A very good review of such systesngiven in Ref. [16]. A typical device is
shown in Figure 3. A (100) Si surface serves as a substhale 8i0, layer behaves as an insulator.
2DEG is induced electrostatically by application a posikméageVs. The sheet density of 2DEG can be
described as

£,

N, == (V, -V,
sed(e ) @)

OoX
whereVr is the threshold voltage for the barrier’s creation.
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Figure 3. Energy Band diagram showing conductance Bgnehlence bané, and quasi-Fermi levél.
A 2DEG is formed at the interface between the oxide /Si@dp-type silicon substrate as a consequence

of the gate voltage y/

Another important system with Q2DEG involves modulationedbp GaAs-AlGaAs
heterostructures. The bandgap in AlGaAs is wider than lsGRy variation of doping it is possible to



move the Fermi level inside the forbidden gap. When the material put together, a unified level of

chemical potential is established, and an inversion laylermed at the interface.

n-AlGaAs i-GaAs

Figure 4. Band structure of the interface betwed&iGaAs and intrinsic GaAs, (a) before and (b) after

the charge transfer.

The 2DEG created by a modulation doping can be squeettedarrow channels by selective
depletion in spatially separated regions. The simphlastdl confinement technique is to create split
metallic gates in a way shown in Figure 5.
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Figure 5. On the formation of a narrow channel by a gati.

Important quantity characterizing any system of egers the density of states (DOS) function.

The density of stateg(E) is defined as the number of states per energy intéey& + dE). It is clear
that

g(E)=> d(E-E,) , )
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wherea is the set of quantum numbers characterizing thessthtethe present case, it includes the
subband quantum numbey spin quantum numbaer, valley quantum number and the in-plane quasi-
momentumk. If the spectrum is degenerate with respect to spin afidys, one can define the spin
degeneracys and the valley degeneraey, to get

(2 )dZJd kS(E-E,) 3)

Here we calculate the number of states per unit voldrbejng the dimension of the space. For 2D case,

we obtain easily

9(E) = vaZG)(E—En). (@)
2m* 5
Within a given subband the 2D density of states functiorengrgy independent. Since there can exist
several subbands in the confining potential, the total tyeosstates can be represented as a set of steps,
as shown in Figure 6. At low temperatulgT( << Ef) all the states are filled up to the Fermi level.
Because of energy-independent density of states, the shestreldensity is linear in the Fermi energy,
namely

vy, mE

NS=N52”72F. (5)

The Fermi momentum in each subband can be determined as

1
Ke, = 2m(E. -E,). (6)

In Eqg. (5),N is the number of transverse modes having the eHgdwlow the Fermi energy. The
situation is more complicated if the gas is confined maaow channel, say, along thaxis. In a similar

way, the in-plane wave function can be decoupled as a product
w(r)On(y)e, W

the corresponding energy being

h2k2
E . =E+E(k)+—= .
n,s,k s(kx) 2m

(8)

In Eq. (8), Es = E, + Es characterizes the energy level in the potential confineboth ¢ andy)
directions. For square-box confinement, the terms are
_(sm)°
S o2mw?
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whereW is the channel width, while for the parabolic confinemgif) = (1/ 2)mafy? (typical for split

gate structures)

E. =(s-1/2)ra, . (10)

For such system, the total density of states is
stu\/_ z @(E - Ens) (11)
23/27771 IE E

The energy dependence of the density of states is shown in 7.
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Figure 6. Density of states for a quasi-2D system.
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guantum Dot (0D black)



3. Description of SCHRED

The periodic crystal potential in the bulk of semiconductimgterials is such that, for a given
energy in the conduction band, the allowed electron wavevectmrs dut a surface ik-space. In the
effective-mass approximation for silicon, these constantggneurfaces can be visualized as six
equivalent ellipsoids of revolution (Figure 8), whose majod minor axes are inversely proportional to

the effective masses. A collection of such ellipsoidsiiiferent energies is referred to as a valley.
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Figure 8. Right panel - Potential diagram for inversiop-tfpe semiconductor. In this first notatiéq
refers to the j-th subband from either theband (i=1) orAs-band (i=2). Left panel - Constant-energy
surfaces for the conduction-band of silicon showing six cormtuttand valleys in the <100> direction of
momentum space. The band minima, corresponding to the centiie ellipsoids, are 85% of the way to
the Brillouin-zone boundaries. The long axis of an eliggsorresponds to the longitudinal effective mass

of the electrons in siliconm =0.916n,, while the short axes correspond to the transverse effectiv
mass,m =0.190m,. For <100> orientation of the surface, theband has the longitudinal mass)(
perpendicular to the semiconductor interface andMHgand has the transverse masg perpendicular

to the interface. Since larger mass leads to smaifieti& term in the Schrodinger equation, the unprimed
lader of subbands (as is usually called), corresponding #y,thand, has the lowest ground state energy.
The degeneracy of the unprimed ladder of subbands for <100>atioenof the surface is 2. For the
same reason, the ground state of the primed ladder of sisbbarresponding to th#&-band is higher
that the lowest subband of the unprimed ladder of subbandsgdegemeracy of the primed ladder of
subbands for (100) orientation of the interface is 4.

In this framework, the bulk Hamiltonian for an electrogsiding in one of these valleys is of the

form
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HO(R)_{Zm; o"x2+2m;dy2+2mz j Veff(z)_ o||(r)+HoE|(Z)’ (12)

whereR =(r,2) , V4 (2) =V, (2) +V,.(2) is the effective potential energy profile of the confining

potential, Viu(2) is the Hartree potential which is nothing more bublat®n of the 1D Poisson equation
introduced later in the tex¥.(2) is the exchange-correlation potential also discusseditatbe text,

HOII is the parallel part oH,, and the transverse part is defined as

hZ

F
Hyo(2) =- dzz +Vg (2) . (13)

pA

The basis-states of the unperturbed Hamiltonian are asstmoe of the form

Yo(R) =% Ly, (15)

where k is a wavevector in thay-plane andA is the area of the sample interface. The subband

wavefunctions satisfy the one-dimensional Schrodinger equation

HOD (Z) wn (Z) = ‘En wn(z) (16)

subject to the boundary conditions th(z) are zero forz =0 and approach zero &—- . In Eq,
(16), &, is the subband energy amf,(z) is the corresponding wavefunction. In the parabolic band

approximation, the total energy of the electrons is given by
21,2

1k
E(k) =7
mXY

+E, =& *E,, (17)

whereég, is the Kinetic energy arlnh:;y is the density of states mass along tizelane. An accurate

description of the charge in the inversion layer of deep-surbmeter devices and, therefore, the

magnitude of the total gate capacitafiggrequires a self-consistent solution of the 1D Poisson

az[e(z) } -eN; (2= Nz (2 +p@) -n(2)] | (18)
and the 1D Schrddinger equation
h% 92
{‘——2 + Vit (Z)]llJij (2 =Ejv;; (2. (19)
2mI 0

In (18) and (19),@(2)is the electrostatic potential [the Hartree potentalz)=-e@(2)], £(2)is the

spatially dependent dielectric constaitl}(z) and N(z) are the ionized donor and acceptor
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concentrationsn(z) and p(z) are the electron and hole densiti®g; (z) is the effective potential
energy term that equals the sum of the Hartree and eyelwomrelation corrections to the ground state
energy of the systean is the effective mass normal to the semiconductor-oxigeface of tha-th
valley, and Ejj and quj(z) are the energy level and the corresponding wavefunction ofl¢atoms
residing in thg-th subband from thieth valley. The electron-density is calculated using

n(z) = z Nijwijz(z)

whereN; is the sheet electron concentration inittlesubband from the j-th valley is given by

m*‘yz kT |n{1+ exd (. - E, ) /kBT]} (20)

Nij =g o

where 9; is the valley degeneracy factor afd is the Fermi energy. When evaluating the exchange-
correlation corrections to the chemical potential, weeh&lied on the validity of the density functional
theory (DFT) of Hohenberg and Kohn [17], and Kohn and Shain f&ording to DFT, the effects of

exchange and correlation can be included through a onelpatichange-correlation terfy,.[n(2)],

defined as a functional derivative of the exchacgeelation part of the ground-state energy of the

system with respect to the electron densitg) . In the local density approximation (LDA), one lages
the functionalVg[N(2)] with a function Ve [N(2)] = texd g =1(2] , Where o is the exchange-
correlation contribution to the chemical potentéla homogeneous electron gas of densjywhich is
taken to be equal to the local electron deng(tg) of the inhomogeneous system. In our model, vee us
the LDA and approximate the exchange-correlatioteqg@l energy ternvg,(z) by an interpolation

formula developed by Hedin and Lundgvist][19

2

e 1 2
b [1+ 0.7734<In( B;ﬂ[ nmsj’ (21)

which is accurate over a large density range. m=(4/977)]/3, X=X(2) =1,/21, rg=14(2) =

Vexc(2) = "8

— 3 %
[471)%(2)/3]] v , andb=4n£SCh2/m e?. Exchange and correlation effects tend to lower tittal

energy of the system, and as discussed later, teadon-uniform shift of the energy levels and
repopulation of the various subbands. The enhantenifehe exchange-correlation contribution to the

energy predominantly affects the ground subbarttie@bccupied valley; the unoccupied subbands of the
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same valley are essentially unaffected. As a resaticeable increase in the energy of the inter-subband

transitions can be observed at high electron densities.

Similarly, the valence band is represented by the heavybhalt and light hole band, the spit-off
band is ignored because the spit-off energy is large enougittiiade any hole staying there. In treating
holes quantum mechanically, the same effective massdashrodinger equation is solved with the
masses quoted from references (C. Hu, S. Banerjeadka B.G. Streetman and R. Sivan, "Quantization
Effects in Inversion Layers of PMOSFET's on Si (100) SutesyalEEE Electron Dev. Lett., Vol. 17,
No. 6, pp.276-278, June 1996 and S. Takagi, M. Takayanagi, aficrAimi, "Characterization of
Inversion-Layer Capacitance of Holes in Si MOSFET'EEE Trans. Electron Devices 46, pp. 1446-
1450, 1999).Due to their different perpendicular masses, the heasy foon the first set of energy
levels which are relatively low, and the light holes fdita second set with higher confined energies.
Schred 2.1 also has the capability of treating the elefttole density in the inversion layer classically by
using either Maxwell-Boltzmann or Fermi-Dirac statistics.

In doing bulk structure quantum mode simulation, the version 2.hatzonly solve the effective
mass based Schrodinger equation for inversion layer carbetsalso can solve the equation for
accumulation layer carriers, for example, if the bulk tgge silicon, in the inversion range, electrons are
treated quantum mechanically, whereas in the accuiomlatange, holes are treated quantum
mechanically. This is a feature that many other simtdado not offer.

In doing SOI quantum mode simulation, both electrons andshale treated quantum
mechanically at the same time. This is because in nassts, the SOI bodies are undoped or lightly
doped, and the two dielectric gates confine the carmengoth inversion and accumulation regimes,
therefore, the quantum effects can be equally impofdarttoth electrons and holes at low biases.

For both simulation modes, (classical or quantum mecagniif the gate contacts are
polysilicon, the charge density on the gates will alwaysdmputed classically. The gate dielectric
constant can be specified different from §iChe new version also allows different dielectrics far top
and bottom gates in a SOI structure. This eases thdatioms of effects of exotic insulator materials on
device performance. Typical outputs of the solver are théaspatiations of the conduction-band edge
and 3D charge density in the body; 2D surface charge deasgyage distance of the carriers from the
interface; inversion layer capacitancg,Qdepletion layer capacitancg.f total gate capacitance,Gand
in the case of capacitors with poly-silicon gates)sb &alculates the poly-gate capacitangg,ONhen
choosing quantum-mechanical description of the electrositgeim thechannel, it also provides the

subband energies the subband population, and wavefunction varatibasody.
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Schred is written in Fortran 77. The program is @&ffic compared to other 1D Schrodinger-
Poisson self-consistent simulators. On a SPARC-5 waitkst generally, it takes about 10 seconds per
bias point in quantum mode calculation, and about 5 secondigagepoint in classical mode calculation.
But for bulk accumulation range simulation, it takes atiredly long time--about 2 to 3 minutes for one
bias point. This is because in accumulation range, the jpatedtial energy level bends very little, and
the subband energies crowds together, so that a large nombebbands need to be included in the
calculation in order to accurately account for the d¢ouations from all lowest subbands. A SOI quantum
mode simulation with very thick silicon body (thicker than Oitron) can also involve relatively long
computation time.

Examples of the application of Schred can be found ivVd&3ileska, D. K. Schroder and D.K.
Ferry, "Scaled silicon MOSFET's: Part Il-Degradatiohthe total gate capacitance,” IEEE Trans.
Electron Devices 44, pp. 584-587 (1997), and D. Vasileska, akdHR&rry, "The influence of space
guantization effects on the threshold voltage, inversion layer total gate capacitance in scaled Si-
MOSFETSs," in the Technical Proceedings of the Firstrhatiional Conference on Modeling and
Simulation of Microsystems, Semiconductors, SensorsAatuhtors, Santa Clara, California, April 6-8,
1998, pp. 408-413. J. Fossum, Z. Ren, K. Kim and M. Lundstrom "Egtraoily High Drive Currents in
Asymmetrical Double-Gate MOSFETS," VLS| symposium J2@80.
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