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1. Quantization Effects in Nano-Devices 

In the past, quantum effects have been known to dominate the operation of resonant tunneling 

diodes [1], quantum cascade lasers [2], etc. Tunneling through the gate oxide [3], source to drain 

tunneling and space-quantization effects are expected to be important in nano-scale MOSFETs and will 

require solution of the one-dimensional (1D) Schrödinger-Poisson problem. Solutions of the two-

dimensional (2D) Schrödinger-Poisson problem are needed, for example, for describing the channel 

charge in narrow-width MOSFETs. With regard to gate-oxide tunneling, the one-electron effective-mass 

approximation may not be sufficiently accurate and ab initio calculations will most probably be needed.  

Note that successful scaling of MOSFETs towards shorter channel lengths requires thinner gate 

oxides and higher doping levels to achieve high drive currents and minimized short-channel effects [4,5]. 

For these nanometer devices it was demonstrated a long time ago that, as the oxide thickness is scaled to 

10 nm and below, the total gate capacitance is smaller than the oxide capacitance due to the comparable 

values of the oxide and the inversion layer capacitances (see Figure 1). As a consequence, the device 

transconductance is degraded relative to the expectations of the scaling theory [6]. 
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Figure 1. Equivalent circuit that shows the various contributions to the total gate capacitance in a MOS 

capacitor. The effect of interface traps has been omitted in the present analysis. If included, it would lead 

to an additional capacitance component in parallel to the inversion layer and depletion layer capacitances.  

 

The inversion layer capacitance was also identified as being the main cause of the second-order thickness 

dependence of MOSFET’s IV-characteristics [7]. The finite inversion layer thickness was estimated 

experimentally by Hartstein and Albert [8]. The high levels of substrate doping, needed in nano-devices 
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to prevent the punch-through effect, that lead to quasi-two-dimensional (Q2D) nature of the carrier 

transport, were found responsible for the increased threshold voltage and decreased channel mobility, and 

a simple analytical model that accounts for this effect was proposed by van Dort and co-workers [9,10]. 

Later on, Vasileska and Ferry [11] confirmed these findings by investigating the doping dependence of 

the threshold voltage in MOS capacitors. The experimental data for the doping dependence of the 

threshold voltage shift and our simulation results from Ref. [11] are shown in Figure 2. 
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Figure 2. SCHRED simulation data for the shift in the threshold voltage compared to the experimental 

values provided by van Dort and co-workers. 

These results clearly demonstrate the influence of quantum-effects on the operation of nano-scale 

MOSFETs in both the off- and the on-state. The two physical origins of the inversion layer capacitance, 

due to the finite density of states and due to the finite inversion layer thickness, were demonstrated 

experimentally by Takagi and Toriumi [12]. A computationally efficient three-subband model, that 

predicts both the quantum-mechanical effects in the electron inversion layers and the electron distribution 

within the inversion layer, was proposed and implemented into the PICSEC simulator [13]. The influence 

of the image and many-body exchange-correlation effects on the inversion layer and the total gate 

capacitance was studied by Vasileska et al. [14]. It was also pointed out that the depletion of the poly-

silicon gates considerably affects the magnitude of the total gate capacitance [15]. 

The above examples outline the advances during the two decades of research on the influence of 

quantum-effects on the operation on nano-devices. The conclusion is that any state-of-the-art device 

simulator must take into consideration the quantum-mechanical nature of the carrier transport and the 
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poly-depletion effects to correctly predict the device off- and on-state behavior. As noted by many of 

these authors, to account for the quantum-mechanical effects, one in principle has to solve the 2D/3D 

Schrödinger-Poisson problem in conjunction with an appropriate transport kernel. (For devices in which 

velocity overshoot is strongly pronounced, minimum that one can do is to solve the Boltzmann transport 

equation using the Ensemble Monte Carlo (EMC) technique.) 

 

2. Quasi-2D Electron Gas 

An important system where quantum effects have been observed is a quasi-two-dimensional 

electron gas (Q2DEG). There are two basic systems where 2DEG has been studied. As already noted, one 

of them is Si MOSFET. A very good review of such systems is given in Ref. [16]. A typical device is 

shown in Figure 3. A (100) Si surface serves as a substrate while SiO2 layer behaves as an insulator. 

2DEG is induced electrostatically by application a positive voltage VG. The sheet density of 2DEG can be 

described as 

 ( )ox
s G T

ox

N V V
ed

ε= −  (1) 

where VT is the threshold voltage for the barrier’s creation. 

 

Figure 3. Energy Band diagram showing conductance band EC, valence band EV and quasi-Fermi level EF. 

A 2DEG is formed at the interface between the oxide (SiO2) and p-type silicon substrate as a consequence 

of the gate voltage Vg. 

 Another important system with Q2DEG involves modulation-doped GaAs-AlGaAs 

heterostructures. The bandgap in AlGaAs is wider than in GaAs. By variation of doping it is possible to 
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move the Fermi level inside the forbidden gap. When the materials are put together, a unified level of 

chemical potential is established, and an inversion layer is formed at the interface. 

 

Figure 4. Band structure of the interface between n-AlGaAs and intrinsic GaAs, (a) before and (b) after 

the charge transfer. 

The 2DEG created by a modulation doping can be squeezed into narrow channels by selective 

depletion in spatially separated regions. The simplest lateral confinement technique is to create split 

metallic gates in a way shown in Figure 5. 

 

Figure 5. On the formation of a narrow channel by a split gate. 

Important quantity characterizing any system of interest is the density of states (DOS) function. 

The density of states ( )g E  is defined as the number of states per energy interval (E, E + dE). It is clear 

that 

 ( ) ( )g E E Eα
α

δ= −∑  , (2) 
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where α is the set of quantum numbers characterizing the states. In the present case, it includes the 

subband quantum number n, spin quantum number σ, valley quantum number υ and the in-plane quasi-

momentum k. If the spectrum is degenerate with respect to spin and valleys, one can define the spin 

degeneracy νs and the valley degeneracy υν  to get 

 ( )( )
(2 )

ds
nd

n

g E d k E Eυν ν δ
π

= −∑∫  . (3) 

Here we calculate the number of states per unit volume, d being the dimension of the space. For 2D case, 

we obtain easily 

 ( )2
( )

2
s

n
n

m
g E E Eυν ν

π
= Θ −∑

h
 . (4) 

Within a given subband the 2D density of states function is  energy independent. Since there can exist 

several subbands in the confining potential, the total density of states can be represented as a set of steps, 

as shown in Figure 6. At low temperature (kBT << EF) all the states are filled up to the Fermi level. 

Because of energy-independent density of states, the sheet electron density is linear in the Fermi energy, 

namely 

 
22

s F
s

mE
N N υν ν

π
=

h
 . (5) 

The Fermi momentum in each subband can be determined as 

 ( )1
2Fn F nk m E E= −

h
. (6) 

In Eq. (5), N is the number of transverse modes having the edges En below the Fermi energy.  The 

situation is more complicated if the gas is confined in a narrow channel, say, along the y-axis. In a similar 

way, the in-plane wave function can be decoupled as a product 

 ( ) ( ) xik xy eψ η∝r , (7) 

the corresponding energy being 

 
2 2

, , ( )
2

x
n s k s x

k
E E E k

m
= + + h

 . (8) 

In Eq. (8), Ens = En + Es characterizes the energy level in the potential confined in both (z and y) 

directions. For square-box confinement, the terms are  

 
( )2

22s

s
E

mW

π
=

h
 , (9) 
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where W is the channel width, while for the parabolic confinement 2 2
0( ) (1/ 2)U y m yω=  (typical for split 

gate structures) 

 ( ) 01/ 2sE s ω= − h   . (10) 

For such system, the total density of states is  

 
3/2

( )
( )

2
s ns

ns ns

m E E
g E

E E
υν ν

π
Θ −=

−∑
h

. (11) 

The energy dependence of the density of states is shown in 7. 

 

Figure 6.  Density of states for a quasi-2D system. 

 

Figure 7. Density of states for bulk (3D blue), quantum well (2D red), quantum wire (1D green) and 

quantum Dot (0D black) 
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3. Description of SCHRED 

The periodic crystal potential in the bulk of semiconducting materials is such that, for a given 

energy in the conduction band, the allowed electron wavevectors trace out a surface in k-space. In the 

effective-mass approximation for silicon, these constant energy surfaces can be visualized as six 

equivalent ellipsoids of revolution (Figure 8), whose major and minor axes are inversely proportional to 

the effective masses. A collection of such ellipsoids for different energies is referred to as a valley. 

 

∆∆∆∆2-band:
     m⊥=ml=0.916m0, m||=mt=0.196m0

∆∆∆∆4-band:
     m⊥=mt=0.196m0,  m||= (m l mt)

1/2=0.42m0
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Figure 8.  Right panel - Potential diagram for inversion of p-type semiconductor. In this first notation Εij  
refers to the j-th subband from either the ∆2-band (i=1) or ∆4-band (i=2). Left panel - Constant-energy 
surfaces for the conduction-band of silicon showing six conduction-band valleys in the <100> direction of 
momentum space. The band minima, corresponding to the centers of the ellipsoids, are 85% of the way to 
the Brillouin-zone boundaries. The long axis of an ellipsoid corresponds to the longitudinal effective mass 
of the electrons in silicon,     ml = 0.916mo , while the short axes correspond to the transverse effective 

mass,     mt = 0.190mo . For <100> orientation of the surface, the ∆2-band has the longitudinal mass (ml) 
perpendicular to the semiconductor interface and the ∆4-band has the transverse mass (mt) perpendicular 
to the interface. Since larger mass leads to smaller kinetic term in the Schrodinger equation, the unprimed 
lader of subbands (as is usually called), corresponding to the ∆2-band, has the lowest ground state energy. 
The degeneracy of the unprimed ladder of subbands for <100> orientation of the surface is 2. For the 
same reason, the ground state of the primed ladder of subbands corresponding to the ∆4-band is higher 
that the lowest subband of the unprimed ladder of subbands, The degeneracy of the primed ladder of 
subbands for (100) orientation of the interface is 4. 
  

In this framework, the bulk Hamiltonian for an electron, residing in one of these valleys is of the 

form 
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Ho (R) = −
h

2

2mx
*

∂2

∂x2 +
h

2

2my
*

∂2

∂y2 +
h

2

2mz
*

∂ 2

∂z 2

 

 
 

 

 
 + Veff (z) = Ho||(r) + Ho⊥ (z)  , (12) 

where R = (r,z) , ( ) ( ) ( )eff H excV z V z V z= +  is the effective potential energy profile of the confining 

potential,  VH(z) is the Hartree potential which is nothing more but a solution of the 1D Poisson equation 

introduced later in the text, Vexc(z) is the exchange-correlation potential also discussed later in the text, 

Ho || is the parallel part of Ho , and the transverse part is defined as 

 
  

Ho⊥ (z) = −
h

2

2mz
*

∂2

∂z 2 + Veff (z)  . (13) 

The basis-states of the unperturbed Hamiltonian are assumed to be of the form 

 Ψ n(R) =
1

A
eik⋅r ψn(z)  , (15) 

where k is a wavevector in the xy-plane and A is the area of the sample interface. The subband 

wavefunctions satisfy the one-dimensional Schrödinger equation 

 Ho⊥ (z)ψ n(z ) = εnψn(z)  (16) 

subject to the boundary conditions that     ψ n(z )  are zero for     z = 0  and approach zero as   z → ∞ . In Eq, 

(16), εn  is the subband energy and ψ n(z)  is the corresponding wavefunction. In the parabolic band 

approximation, the total energy of the electrons is given by 

 
  

En(k) =
h

2k2

2mxy
* + εn = εk + εn  , (17) 

where εk  is the kinetic energy and mxy
*  is the density of states mass along the xy-plane. An accurate 

description of the charge in the inversion layer of deep-submicrometer devices and, therefore, the 

magnitude of the total gate capacitance Ctot requires a self-consistent solution of the 1D Poisson 

 [ ])()()()()( znzpzNzNe
z

z
z AD −+−−=






∂
∂

∂
∂ −+ϕε  , (18) 

and the 1D Schrödinger equation 

 )()()(
2 2

22
zEzzV

zm
ijijijeff

i

ψ=ψ











+

∂

∂−
⊥

h
. (19) 

In (18) and (19), )(zϕ is the electrostatic potential [the Hartree potential VH(z)=-e )(zϕ ], )(zε is the 

spatially dependent dielectric constant, )(zND
+ and )(zN A

− are the ionized donor and acceptor 
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concentrations, )(zn and )(zp  are the electron and hole densities, )(zVeff  is the effective potential 

energy term that equals the sum of the Hartree and exchange-correlation corrections to the ground state 

energy of the system, ⊥im  is the effective mass normal to the semiconductor-oxide interface of the i-th 

valley, and ijE  and )(zijψ are the energy level and the corresponding wavefunction of the electrons 

residing in the j-th subband from the i-th valley. The electron-density is calculated using 

2

,

( ) ( )ij ij
i j

n z N zψ=∑  

where Nij  is the sheet electron concentration in the i-th subband from the j-th valley is given by 

 ( ){ }
*

2
ln 1 exp /xy

ij i B F ij B

m
N g k T E E k T

π
 = + − h

 (20) 

where ig  is the valley degeneracy factor and FE  is the Fermi energy. When evaluating the exchange-

correlation corrections to the chemical potential, we have relied on the validity of the density functional 

theory (DFT) of Hohenberg and Kohn [17], and Kohn and Sham [18]. According to DFT, the effects of 

exchange and correlation can be included through a one-particle exchange-correlation term V n zexc[ ( )] , 

defined as a functional derivative of the exchange-correlation part of the ground-state energy of the 

system with respect to the electron density n(z) . In the local density approximation (LDA), one replaces 

the functional V n zexc[ ( )]  with a function V n z n n zexc exc[ ( )] [ ( )]= =µ 0 , where µexc  is the exchange-

correlation contribution to the chemical potential of a homogeneous electron gas of density n0 , which is 

taken to be equal to the local electron density n z( )  of the inhomogeneous system. In our model, we use 

the LDA and approximate the exchange-correlation potential energy term V zexc ( )  by an interpolation 

formula developed by Hedin and Lundqvist [19] 

 V z
e

b
x

x rexc
sc s

( ) . ln= − + +FHG
I
KJ

L
NM

O
QP
F
HG
I
KJ

2

8
1 0 7734 1

1 2

πε πα
,  (21) 

which is accurate over a large density range. In (4), α π= 4 9 1 3b g , x x z rs= =( ) 21, r r zs s= =( )  

4 33 1 3
πb n z( ) /

−
, and b m esc= 4 2 2πε h

* . Exchange and correlation effects tend to lower the total 

energy of the system, and as discussed later, lead to non-uniform shift of the energy levels and 

repopulation of the various subbands. The enhancement of the exchange-correlation contribution to the 

energy predominantly affects the ground subband of the occupied valley; the unoccupied subbands of the 
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same valley are essentially unaffected. As a result, noticeable increase in the energy of the inter-subband 

transitions can be observed at high electron densities. 

Similarly, the valence band is represented by the heavy hole band and light hole band, the spit-off 

band is ignored because the spit-off energy is large enough to exclude any hole staying there. In treating 

holes quantum mechanically, the same effective mass based Schrodinger equation is solved with the 

masses quoted from references (C. Hu, S. Banerjee, k. Sadra, B.G. Streetman and R. Sivan, "Quantization 

Effects in Inversion Layers of PMOSFET's on Si (100) Subatrates," IEEE Electron Dev. Lett., Vol. 17, 

No. 6, pp.276-278, June 1996 and S. Takagi, M. Takayanagi, and A. Toriumi, "Characterization of 

Inversion-Layer Capacitance of Holes in Si MOSFET's," IEEE Trans. Electron Devices 46, pp. 1446-

1450, 1999).Due to their different perpendicular masses, the heavy holes form the first set of energy 

levels which are relatively low, and the light holes form the second set with higher confined energies. 

Schred 2.1 also has the capability of treating the electron/hole density in the inversion layer classically by 

using either Maxwell-Boltzmann or Fermi-Dirac statistics.  

In doing bulk structure quantum mode simulation, the version 2.1 can not only solve the effective 

mass based Schrodinger equation for inversion layer carriers, but also can solve the equation for 

accumulation layer carriers, for example, if the bulk is p type silicon, in the inversion range, electrons are 

treated quantum mechanically, whereas in the accumulation range, holes are treated quantum 

mechanically. This is a feature that many other simulators do not offer.  

In doing SOI quantum mode simulation, both electrons and holes are treated quantum 

mechanically at the same time. This is because in most cases, the SOI bodies are undoped or lightly 

doped, and the two dielectric gates confine the carriers in both inversion and accumulation regimes, 

therefore, the quantum effects can be equally important for both electrons and holes at low biases.  

For both simulation modes, (classical or quantum mechanical), if the gate contacts are 

polysilicon, the charge density on the gates will always be computed classically. The gate dielectric 

constant can be specified different from SiO2, The new version also allows different dielectrics for the top 

and bottom gates in a SOI structure. This eases the simulations of effects of exotic insulator materials on 

device performance. Typical outputs of the solver are the spatial variations of the conduction-band edge 

and 3D charge density in the body; 2D surface charge density, average distance of the carriers from the 

interface; inversion layer capacitance Cinv, depletion layer capacitance Cdepl, total gate capacitance Ctot and 

in the case of capacitors with poly-silicon gates, it also calculates the poly-gate capacitance Cpoly. When 

choosing quantum-mechanical description of the electron density in thechannel, it also provides the 

subband energies the subband population, and wavefunction variations in the body.  
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Schred is written in Fortran 77. The program is efficient compared to other 1D Schrodinger-

Poisson self-consistent simulators. On a SPARC-5 workstation, generally, it takes about 10 seconds per 

bias point in quantum mode calculation, and about 5 seconds per bias point in classical mode calculation. 

But for bulk accumulation range simulation, it takes a relatively long time--about 2 to 3 minutes for one 

bias point. This is because in accumulation range, the band potential energy level bends very little, and 

the subband energies crowds together, so that a large number of subbands need to be included in the 

calculation in order to accurately account for the contributions from all lowest subbands. A SOI quantum 

mode simulation with very thick silicon body (thicker than 0.1 micron) can also involve relatively long 

computation time.  

Examples of the application of Schred can be found in D. Vasileska, D. K. Schroder and D.K. 

Ferry, "Scaled silicon MOSFET's: Part II-Degradation of the total gate capacitance," IEEE Trans. 

Electron Devices 44, pp. 584-587 (1997), and D. Vasileska, and D.K. Ferry, "The influence of space 

quantization effects on the threshold voltage, inversion layer and total gate capacitance in scaled Si-

MOSFETs," in the Technical Proceedings of the First International Conference on Modeling and 

Simulation of Microsystems, Semiconductors, Sensors and Actuators, Santa Clara, California, April 6-8, 

1998, pp. 408-413. J. Fossum, Z. Ren, K. Kim and M. Lundstrom "Extraordinarily High Drive Currents in 

Asymmetrical Double-Gate MOSFETs," VLSI symposium June, 2000. 
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