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A general feature of electron devices is that they ats®fonly when connected to a circuit, and to be so
connected any device must possess at least two terngoalscts, or leads. As a consequence, every
device is an open system with respect to carrier fivhis is the overriding fact that determines which
theoretical models and techniques may be appropriately agplidte study of quantum devices. For
example, the quantum mechanics of pure, normalizable ,statgs as those employed in atomic physics,
does not contribute significantly to an understanding of devicesiube such states describe closed
systems.

To understand devices, one must consider the un-normalizatterswy states, and/or describe the
state of the device in terms of statistically mixegtest, which casts the problem in terms of quantum
kinetic theory. As a practical matter of fact, a devEef use only when its state is driven far from
thermodynamic equilibrium by the action of the external dirclihe non-equilibrium state is
characterized by the conduction of significant currerdugh the device and/or the appearance of a non-
negligible voltage drop across the device.

In classical transport theory, the openness of the deviaddressed by the definition of appropriate
boundary conditions for the differential (or integro-difietial) transport equations. Such boundary
conditions are formulated so as to approximate the beha¥itihe physical contacts to the device,
typically Ohmic or Schottky contact§.[In the traditional treatments of quantum transplepries, the
role of boundary conditions is often taken for grantedthe models are constructed upon an unbounded
spatial domain. The proper formulation and interpretatibthe boundary conditions remains an issue,
however, and will be examined in the present work. It shiméldunderstood that, unless otherwise
specified, all models to be considered here are based upoglertsand, effective-mass Schrodinger

equation.

1 Tunneling Theory

The simplest model of quantum transport in devices wegeribe the problem in terms of the
scattering of the electron wavefunction by a spatiallyimgrpotential. One assumes that this potential is
situated between two electron reservoirs, each of wmcits particles with an equilibrium distribution
into the scattering region. The reservoirs will, in gelhehave different chemical potentials, their

difference representing an applied bias voltage. The net flekeofrons passing between the reservoirs



constitutes the electrical current conducted by the devissgde-particle Schrodinger equation can only
describe a situation in which the electrons move perfediterently throughout the device. Any loss of
coherence due to inelastic collisions requires a highel-tisseription. Nevertheless, the solutions of
Schrodinger’s equation remain one of the fundamental tooldablato understand and predict the
behavior of quantum-scale devices.

In this section we will first show that all particlesthvE<V, incident on a potential step of height
are reflected. In other words, although the quantumhamgcal treatment predicts penetration of the
wavefunction into the classically-forbidden region (the prdigliensity in this region is non-zero), we
can not demonstrate this phenomenon in a laboratory. Hovessecan demonstrate the penetration into
a classical-forbidden region if we chop-off the potentigpp schanging it into a barrier of width Then,
according to quantum physics, particles v/, incident on the barrier from the left, will penetrate the
potential and will be transmitted into the classicallowed region where we can detect them. This
wholly non-classical phenomenon is called TUNNELING (see Eigi16) []. The two remarkable

applications of tunneling are:

(a) Resonant tunneling diodes, which are used as switching uiétstialectronic circuits.

(b) Scanning tunneling microscope (STM), based on the penetaitelactrons near the surface of a
solid sample through the barrier at the surface (spar&il-17). These electrons form a “cloud”
of probability outside the sample. Although the probabilitydefecting one of these electrons
decays exponentially with distance (from the surface), aneircduce and measure a current of
these electrons and attain a magnification factor of 100omi- large enough to permit
resolution of a few hundredths the size of an atom. ®erding and Heinrich Rohrer won the
Noble Prize in Physics in 1986 for the invention of the M
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Figure 1 Quantum-mechanical tunneling.



revolution of tunnelling: Scanning Tunnelling Microscope
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Figure 2.Scanning tunneling microscope operation based on quantutramieal tunneling.

In the rest of this section, we will first describe tinaneling phenomenon through the example of a
single barrier. Then, we will talk about multiple barrease formulation, the double barrier being a

special case which we have in resonant tunneling diodes.

2. General Notation

Quantum physicists are interested in all kinds of physigstems (photons, conduction electrons
in metals and semiconductors, atoms, etc.). Statdsest rather diverse systems are represented by the
same type of functions, the state functidhsThefirst postulate of quantum mechanics states thagvery
physically-realizable state of the system is described in quamechanics by a state functighthat
contains all accessible physical information about the system intdtatBhysically realizable states are
states that can be studied in laboratory, accessifdemation is the information we can extract from the
wavefunction and the state function is function of position, momentum amnergy that is spatially
localized. Alsq if Y, and Y, represent two physically-realizable states of theesysthen the linear

combination

W=cP; +Coly, 1)
where ¢ and ¢ are arbitrary complex constants, represents a thirdqallysrealizable state of the system.
Quantum mechanics describes the outcome of an ensembkastimaments, where an ensemble of
measurements consists of a very large number of iéérgikperiments performed on identical non-

interacting systems, all of which have been idengigaiepared so as to be in the same state. This brings



us to thesecond postulate of quantum mechanics that statesif a system is in a quantum state

represented by a wavefunctignthen

PdV =|y|*dV @)
is the probability that in a position measurement at time t thegamill be detected in the infinitesimal

volume dV.Note that|l]J(x,t)|2 is the position and time probability density. The impoce of

normalization follows from the Born interpretation of thatetfunction as a position probability
amplitude. According to the second postulate of quantum m@asheahe integrated probability density
can be interpreted as a probability that in a positionsoreaent at time, we will find the particle

anywhere in space. Therefore, the normalization conditiothéwavefunction is:

JPAV = [W(x, v.2)]“dV = [U" (% y, DW(x, y, 9dV =1 3)
There are several limitations on the wavefunction thaedrom this normalization condition: (1) Only
normalizable functions can represent a quantum statthasd are called physically admissible functions.
(2) State function must be continuous and single valuedifumd3) State function must be a smoothly-
varying function (continuous derivative).

The Born interpretation of quantum mechanics enables ueteymine from a wavefunction, the
probabilistic information. For example, we can answer fbiowing question: In an ensemble
measurement of position at timhewhat is the probability that a member of the ensemlileexhibit a
value in the range from to x+dx? To characterize the results of an experiment, wewsestatistical
guantities: ensemble average><and standard deviatigkx. In quantum theory, the ensemble average of
an observable for a particular state of the systemllisdcine expectation value of that observable that is

calculated using

< x>= [ XP(x,t)dx =] W (X, t)xP(x,t)dx = (P, x) 4)
Note that the expectation value can be time dependentsod=<x(t)>. Also, the expectation value
depends upon the state of the system. Different staj@esemted by different state functions have
different ensemble averages. Let's denote a generic obée@&) that depends only upon position. The

expectation value of this observable is given by:

<QM) >= W (x)QIW(x,t)dx (5)
The other statistical quantity that one uses in quamtoysics is the standard deviation of an observable -
otherwise known as uncertainty. For a position measunternie uncertainty i answers the following

guestion: In an ensemble measurement at tiofiche position of a particle in a stapéxt), what is the



spread of the individual results around the expectation vads@ €0 answer this question, one needs to

calculate the dispersion:

AXZ = [P (%, )[x= < x>J2W(x, t)dx=< x% > — < x >2 (6)

The uncertainty, or the standard deviation is given by:

Mx=A<x2>-<x>2, )
or the uncertainty equals the square-root of the dispersig@enreral, the uncertainty in the measurement

of the observabl®(x) is given by:

AQ:\/<QZ>—<Q>2 (8)
We have already stated thpfxt) is the state function of a system in the positionaspntation. It
must be normalizable since it describes a localized [marficherefore, one can define a Fourier transform
of this function:

1 ®
0)=—— [ dkd** k),
P(x,0) \/51_{,0 @(k) 9)

where@(Kk) is the Fourier coefficient, or in this particular céseepresents the momentum wavefunction
also known as the amplitude function. The description of thicjgain momentum state is achieved
using these momentum wavefunctions. In summary, the pogtmability amplitudey(x,t) and the
momentum state functiog(k) are state descriptors for a microscopic system.sBeend class of basic
elements are the observables, which represent the phgtidaltes of a system that can be measured in a
laboratory. Examples of observables are posit{tyh momentunp(t) and energy E(t)). The problem

of applying a classical definition of observables for quanstates is that it is impossible to measure the
properties of a microscopic system without alteringsitge.The third postulate of quantum mechanics
states thatEvery observable in quantum mechanics is represented by an operathrisvbsed to obtain
physical information about the observable from the state functir an observable that is represented

in classical physics by a functi@(x,p), the corresponding operator@X, p) [.



Table 1. Most important operators in quantum Physics.

Observable Operator
Position X
Momentum _ ho
P=——
I Ox
Energy =2 2 ;52
E=P v =-1"9" v
2m X2

An operator (see Table 1-4) is an instruction, a symbokhwhells us to perform one or more
mathematical acts on a function, $&y). The essential point is that they act on a functiqrer@tors act
on everything to the right, unless the action is constraigdardckets. The addition and subtraction rule

for operators reads:

(@£ Q)f(0=Qf ()£ Q1 (¥ (10)
The product of two operators implies successive operation
QQ f(¥) = (51[@2 f (X)] (11)
The product of two operators is a third operator:
Q3 =QQ; (12)
Two operators commute if they obey the simple opetpression:
[@1 (52] =QQR-0Q=0 => QQ=0QQ; (13)

The requirement for two operators to be commuting opesas a very important one in quantum
mechanics and it means that we can simultaneouslyuneeti®e observables represented with these two
operators. The non-commutivity of the position and the mammenbperators (the inability to
simultaneously determine particles position and its momantis represented with the Heisenberg
uncertainty principle, which in mathematical form is eegzed as:

h_L. -
AX[Bp= 7 = EK[X’ pl). (14)

and can be generalized for any pair of observables.



In 1926 Erwin Schrédinger®] proposed an equation that describes the evolution of atugnan

mechanical system (which represents quantum equationetin), and is of the form:

_n%o%w _n?o* _ipd¥
2m 02 +V(X)P(x,t) = { 2m 92 +V(x):|lp(x,t)—|h 3t (15)

This work of Schrédinger was stimulated by a 1925 paper Istétinon the quantum theory of ideal gas
['], and the de Broglie theory of matter wav8ls Examining the time-dependent SWE, one can also
define the following operator for the total energy:

0

E=ih— 16
[ m (16)

The introduction of the Schrodinger equation brings us tdatnegh fundamental postulate of quantum

mechanics which states thate time development of the state functions of an isolated quantum syst
governed by the time-dependent SWE =izdy/dt, whereH =T +V is the Hamiltonian of the

system The time-dependent Schrodinger wave equation (TDSWE) descthe evolution of a state
provided that no observations are made. An observatias #iie state of the observed system, and as it is,
the TDSWE can not describe such changes.

The solution of the TDSE is a rather formidable problermenelD. The underlying problem is not
just that it is a partial differential equation of secamder inx and first order irt, but that we must
consider both of these variables at once. As a consequéecepace and time dependence of the
wavefunction may be very complicated. One way to solveTD8E is to seek solutions that have a

particularly simple form, i.e.

WYX 1) =P(x)E() 17)
These product functions are called separable solutions of thial ghfferential equation (PDE). In
Quantum Mechanics, they are called stationary-state fuastions f]. One can find these stationary-
state wavefunctions using a method called separation ofblesia For example, substituting the above

expression fonJ(x,t) into the TDSE, one gets:

n® lIJ(X) 65( )
2m

x>

() - +V X HW(X) | = w(x)in——= (18)

or:



2 52
1 l:_h_a Y(x) +V(X,t)llJ(X)}:ihi@ (19)

W) 2m %2 &(t) ot

The last equation is almost separable, since, in gernleeapotential energy can depend on bo#ndt.

If we assume tha¥/ (x,t) =V (X), i.e. the potential energy is time-independent, then th® IsHonly a

function of x and the RHS is only a function of Therefore, the two sides can be equal if they are

constant. This gives us two equations:

2
L 0ROy [ =a e~ O g = o
| 2m g m ox® (20)
1 OgM) _, i, 080 _
I =ag(t)

The fact that we can obtain these two equations apraijided thatV does not depend on time, proves
that stationary state wavefunctions exist for systentls avitime-independent potential energysystem
whose potential energy is time-independent is said to beepaative. Hence, stationary states exist for

conservative systems.

Now, the solution of the second equation [&ft) ] is very simple, and is given by:

&) =€(0)e™ " (21)
The Born interpretation af)(x,t) [*] provides a clue to the physical meaning of the separetiostant

a. The wavefunction of a stationary state oscillatea &tequencyw =a/#. From the de Broglie-
Einstein relation, one has thkt= 7w =a . Hence, we can represents the total energy of the particle

in the state represented with this wavefunction, i.e.

&) =gy (22)
The first equation then becomes:
n? 92
l: %GT‘FV(X):IHJE(X) EQe(X) (23)

This is the time-independent SE (TISE), which is an eqoatf a very special form. There is a

differential operator representing the total energy ofsylstem, which operates on the unknown function

WEe(X) to produce the same functiapg (X) multiplied by a parameteE. Mathematicians call an

equation of this form an eigenvalue equation wherg(X) is the eigenfunction and is the

corresponding eigenvalue.



Thus, the results presented in this section can be avp®d as follows: (1) If a microscopic system
is conservative, then there exist special quantum sthtee system, called stationary states, in which the
energy is sharp. (2) Even if the number of these eigesstigfinite, the energies of the bound states
form a discrete list. (3) If there is a one-to-one egpondence between the quantized energies of a
guantum system and its bound state, or stationarysstatefunctions, then the bound state energy is non-
degenerate. |If there are stationary states for whicte tberrespond more than one distinct spatial

functions, such bound states are called degenerate.
21 Stationary States for a Free Particle

Let's try to solve the TISE for a free particle, for ethV (x) =0, i.e.

2 22 2 52
JIZ 0T _ gy L BT OTW L g =0 (24)
2m  jx2 2m  gx?

This is a homogeneous, second-order partial differential iequatth constant coefficients, and the

solution of this equation is of the form:

P(x) = A +Be, k= /zhle (25)

This function is not normalizable, since it does not decaMon oo . Two properties follow from the

impossibility of normalizing this function: (1) The energieg aot quantized, i.e. all valu€s>0 are

allowed. (2) The energies are degenerakea¥d k).

2.2 Potential Step

Our next task is to solve the TISE for one-dimensional sipgtécle system whose potential
energy is piecewise constan].[ A piecewise constant potential is one that is congtarall values ofx
except at a finite number of discontinuities-points, wheichanges from one constant value to another.

One of the simplest piecewise-constant potentials ipdtential step

V(x) = {v%, XX<ZOO L V(%) =VO(X) (26)

shown graphically in Figure 1-18.



Our task is to solve the following problem: We assumeweatave a beam of particles incident from the
left that encounters an impulsive forcexa®. We will consider two cases: Case (a) when the eriegy

the particle is less thaw, and Case (b) when the energy of the particle is greatekh

U

Figure 3. Potential step (an example of a piecewise cdrsttential).

Case (a): E<V,

For this particular case, we need to distinguish betweerseparate regions:

On the left from the potential stef, >V (X) = classically-allowed region

On the right from the potential stef, <V (X) =» classically-forbidden region

x=0 is called a turning poin® point that separates the classically-allowed from thesally

forbidden regions (see the figure below).
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Region 1 (classically forbidden)
(classically aIIowed)V h2K2
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Figure 4 Description of the various regions for case (a).

The solution procedure for this type of problems is the fatigwne:



* Write down the TISE for each region in which the potérgreergy is constant. Solve the TISE
up to arbitrary constants.

* If necessary, apply the asymptotic condition to get physiealiyissible state function.

* Match the wavefunctions and the derivatives of the wavefurscdbeach of the turning points.

Following the above-outlined procedure, we get the following gereegmkssions for the wavefunctions
in region 1 (x < 0) and region 2 (x > 0):

AQglkix 4 gk =y, (), Kk, = Z;ZZE

P(x) =
A2 gKaX =Py(X), Kp= /Zm— (\;OZ_E)

The unknown coefficients that appear in the above expressiaralatdated from the requirement that

(27)

Y(x) be continuous and smooth, which implies that it must ke continuous first derivative.
Therefore, using the boundary conditions:
Y1 0)=w2(0)

dpr (9| _ dwp() 29
dX |yeo dx |yeg

we get:
B® = k7K
kl + 1Ko

A@ =K @
k1+iK2

(29)

Some important conclusions that can be derived from the aljoatiens are:

. ‘B(l)‘ :‘A(l)‘ , which means that in region 1, two waves of equal anggitravel in the opposite

direction and with the same phase velocity. Because sf thé wavefunction in region 1

represents a standing wave.

» The above observation suggests that the probability of tiefld®(E)=1 and that of transmission
T(E)=0. This result is just what we would expect were \pplyng classical physics to the

problem.

* Inregion 2, the wavefunction represents an evanescent waese amplitude equals to



% ‘A(l)‘e_KZX (30)
2
2

k12+K

W2(¥)| =

This is consistent with the previous observation thiatnaldent particles withE<V, are reflected

back. Therefore, we might say that no probability flo@ssociated with evanescent waves

Case (b): E>V,
A
Region 1 V(X) Region 2
E ..................................................... 2.2
E-Vy=" K2
V 2
h2Kk? 0
E=—1
2m

Figure 5. Graphical description of the variables used ferctise.

Following the procedure described above, we get the followingrgeexpressions for the wavefunctions

in region 1 and region 2:

ADkix 4 g@)gikix — W (x), K= 2mE

hz
(X) i 2mE -V,
A(Z)e'kzx—llJz(X), kz_ [ ( 5 O)

The unknown coefficients that appear in the above expressi@gaire calculated from the requirement

(31)

that Y(X) be continuous and smooth, which implies that it must hise continuous first derivative.

Therefore, using the boundary conditions:

P10 =y, (0
dpi ()] _ dyp(¥) (32)
dx |x:O dx |x:0

in this particular case we obtain:



p® =X k2 \ @
ki + ko

A@ - 2,
kl + k2

(33)

Some important conclusions that can be derived from the aloedi@n are:

* Since all coefficients are real and their magnitudénigeneral not equal to one, we might

conclude that the wavefunction for continuum stationangsta of the following general form:

incident wave +reflected wave - source
transmitted wave - detector

v ={
We want to define the following two quantities:
e p(BE)= B® / AD 3 reflection probability amplitude

- 1(E)= AP 1 AD > transmission probability amplitude

Then, we can write:

A(l)elle +p(E)A(1)e—|k1X - LIJ]_(X), X < O

. 34
W(E)ADe™2X =y, (x), x=0 59

W(x) = {
From the probability amplitudes, one can calculate thectefleand transmission coefficients. To do so,
we return to the probability current densities - the fluxder the incident, reflected and transmitted

waves. If we use the expression for the probability currémhedform

ieh (oY * oy
J __ren —* 35
) Zm[ ox w-v GXJ )
we arrive at the following results:

enk 2 2
Jp = _—Zml [l—|P(E)| }‘A(l)‘ = Jinc * Jref, X<0 (36)

enk 2| A ()2
Jo= _Z—mZ|T(E)| ‘A(l)‘ = Jyrans: X20 (37)

If we look at the result at region 1, the probability curréensity J; equals the sum of the incident

current and a reflected current. In region 2, we havansmitted currentl,. We can, therefore, define

a reflection probabilityR(E) and transmission probabilif(E) in the following manner:



R(E) = = =|o(E)|?, and 38
® ‘Jinc‘ ‘ _qhkl‘A(l)‘z ‘ [P(E)", an (38)
m
_ Ok 2l () ‘
(B)"|A
T(E) |J”a”5|=‘ © ‘ ‘ :Q|r(E)|2 (39)
| Jinc | qhkl‘A(l)‘z ‘ k

Since a particle is either reflected or transmittegl must have that

T(E)+R(E)=1 . (40)

For our particular problem, this gives us:

ki —ko
k1+ k2

4ksko
(ky +ko)®

Therefore, in contrast to the caBe&V,, our result forE>V, does not conform to the predictions of

(41)

2
R(E) :( J andT(E) =

classical physics.
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Figure 6 A step potential of height=0.3 eV. The effective mass of the electrons is assuonled 0.067
my,, where g is the free electron mass. Transmission and refleciefficient for a step potential as a

function of the incident carrier energy.

An interesting thing to plot is the magnitude squaredhefwavefunctions in regions (1) and (2) as a

function of position. The behavior {Jﬁi (x)|2 (i=1 for region 1 and=2 for region 2) is shown on Figure



1-22. We usé€=0.25 eV andA®=1. Note that the energy of the particless smaller than the barrier
height. Therefore, we expect to see standing wave patteeygion 1 [sinceR(E)=1 for this case] and

evanescent (exponentially-decaying solution) in region 2.

W)

2 -
evanescent wave -

N ]
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standing wave pattern

Figure 7. The magnitude squared of the wavefunction for camergy less than the barrier height.

23 Tunneling Through a Single Barrier
Consider the potential barrier shown in Figurel-23, for wthehpotential energy term appearing
in the 1D TISE is of the form:

0 x<0O
V(x)=1Vy, O0sx<sL
0 x>L

(42)
Following the steps outlined in the previous section, iagyeo show that for energiEs'V,, the general

solution of the 1D TISE in each of the three regions, th@form:



Py(x) = Ae¥ + Be™

2m\Vy - E
W, (x) =Ce VX+DeVX , wherek = / y= }—m:oz : . (43)
h
ikx

Wa(x) = Ee +Fe
V(X
V)
: Region 2
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Figure 8. Single potential barrier.

The application of the continuity conditions of the wavefiorctat the boundariexs =0 andx =L,
leads to the following relationship between the unknown coisstan

$Y,0)=¢y,0 - A+B=C+D

W10= W0 - ik(A-B)=-y(C-D)

Po(L) =Ps(l) — Ce M +Det =gkt +pet

l]JIZ(L):l]JI3(L) - —y(CeyL—DeVL) |k(Ee'kL Fe_ik") (44)

Using the above four equations, we can find the relationflaifygeeen various coefficients, i.e. using

matrix representation these relationships can be reprdszsite

1(1 EJe(ik+y)L 1 1+iEJe—(ik—y)L
A Tt e
° E(H,EJe(Ik—v)L ll—iEJe-(ikﬂOL F F
2 Y 2 Y

(45)
In other words, we have the following relationship betwéercoefficient andB, and the coefficients
E andF:



B]=Ma 5 |=MaMo E |=m[E]. (46)

where the matrix M has elememtg. Therefore, for coefficientd andE (using the asymptotic condition
that F=0) we have the following simple relationshs=my;E, i.e. the transmission coefficient is simply
given by:

2

|m11|2 |

After a rather straightforward calculation, we arrivietlze following expression for the transmission

T(E) = ‘Ti 47)

coefficient for particle energies less than the barrigghte

2 112 2
} sh?(yL) (48)

- y +
T(E) = 1+{ oy

In the case of a weak barrigt.€<1), the expression for the transmission coefficient sfieplto:

1
TE)x— . 49
® 1+ (kL/2)? )

In the opposite limit, i.e. when the barrier is verystyd/L is very large), we have the following

approximate expression for the transmission coefficient:

2
T(E) = 24 5 exp(-2yL) . (50)
ke +y
For energies larger than the barrier height G528/, using that=ik,, gives:
-1
k2 -k2 °
T(E)=|1+ sin“(k,L . 51
(E) 2Kk, (koL) (51)

The later result is similar to the one obtained in the ptessgection, i.e. the transmission maxima

(T(E)=1) occur fork,L = nrt.



In Figure 1-24, top panel, we show several results for antwmtdarrier. The barrier height equals
Vo=0.4 eV, whereas the barrier widthLis6 nm. We also show how the transmission coefficient varies
with the width of the barrier, for fixe® andV, (Figure 1-24, bottom panel). We consider two cases:

particle energies smaller and larger than the barrighhei

@ 0.6 -
|_
L=6 nm, VO:O.4 eV
0.4
m=6x10"* kg
0.2 - b
0 Il Il Il
0.0 0.5 1.0 1.5 2.0
Energy [eV]
m)
|_

0.2 ! !
0.0 5.0 10.0 15.0 20.0 25.0 30.0

Barrier thickness L [nm]

Figure 9. Top panel - Variation of the transmission caefiicwith energy. Bottom panel - Variation of

the transmission coefficient with the barrier thickness.

The following observations can be derived from the resultsepted in this section:



» Classical physics would predict that no particles \eiiergyE<V, are transmitted; quantum physics
reveals that the probability of transmission of such gastimcreases hyperbolically with increasing

energy.

» Classical physics would predict that all incident pdes with E>V, are transmitted; quantum
mechanics shows that this condition - caltethl transmission - occurs only at a few discrete

energies. An incident particle witB>V, that lies between these special values, determindgteby
conditionk,L = n1t, may be reflected. The probability of reflection deaesagery rapidly with

increasing the energy of the partiéle

* For another perspective on transmission and reflection bariger, now let us look at the results
shown in Figure 1-24, bottom panel. Here, the energy of thelpdf and the barrier height are
fixed andT(E) is plotted as a function of the barrier width This figure shows another bizzare
result: for a given energl, only barriers of certain width will transmit all pates of this energy
(transparent barriers). But there is no value of thdthngsuch that a barrier of this width reflects all

incident particles, because for all valued pthe reflection coefficierR(E) is less than one.

» Because of the hyperbolic decay of the eigenfunction in thssichlly forbidden region, the

amplitude of the eigenfunction in the detector regiondsiced from its value in the source region.

24 Tunneling Through Arbitrary Piecewise-Constant Barrier
We now consider the case of arbitrary number of piece-eaastant potential barriers. As in the

case of a simple barrier, the transmission and thectefh coefficients are calculated by solving, either

explicitly or implicitly the Schrddinger equation over the @amx_ < x < Xz . We assume that outside of

the domain of interest (in the asymptotic regions), the fuaeeon consists of superposition of traveling

waves, and we write the general solution

a1e"" (%) 4 b e ko) y < X

_ . (52)
ar e—lkr (x=%) + br elkr (X=xq) , X > Xr

Ww(x) ={

In the transmission matrix approach outlined in the prevseasion, the domain is divided into a suitable

number of intervals over each of which the potential lbartaken to be constant, or perhaps linearly
varying. Within each such interval, the wavefunctioexpanded in terms of two independent solutions at
the chosen energy (oppositely directed traveling waveipotential is constant). Then the amplitudes

of these waves at the two ends of intervadn be related by the propagation maix



ik
P {eo eo} (53

The appropriate matching conditions at the boundary betweewalsteandi+1 must be derived from
the form of the Hamiltonian, and are expressed by a nBtriich is typically of the form

111+r 1-r
B == (54)
2(1-r 1+r

wherer =v, /v,,,, is the velocity ratio. One can then relate the coefiiisi in the left asymptotic region,

incorporate into a vectay, =[a,,b]", to those in the right asymptotic regiagt, =[b,,a.]", by a
matrix M formed from the product of the appropriate propagation anddary matrices:
Y =M¥Y =P B, ,...B,PBPRY (55)

In practical calculations, the transmission matrix apgrdaas proven to be less than satisfactory,
because it is prone to arithmetic overflow. In regions whkeeewavefunction is evanescent, tRe
matrices contain real elements equal to the attenuatiireakgion and its inverse. The inverse is likely
to be a very large positive number, and if several ea@am regions are cascaded, the numbers in the
matrix will rapidly exceed the dynamic range of floatingnpaariables. This problem is particularly
severe when the transmission matrix scheme is applied telaot models, because at any given energy
many of the bands will be evanescent, but it has also dleserved in simple single-band calculations.
The transfer matrix method®f’] has been generalized to multi-dimensional systems hyskye[1],
Lentet al [**], and to multi-band Hamiltonians by Tirg al ['°"]. In the latter methods the scattering
boundary conditions are applied via the quantum transmittinmdary method (QTBM)'{, and the
transmission is obtained via the solution of a linear systéh dimensions proportional to the size of the
device that has to be solved repeatedly. Very recentinodified version of the QTBM has been
developed that expands the scattering solutions in termsooflifferent closed system wave functions
[*]. The calculations are charge self-consistent, but hang been implemented for single-band
situations so far.

The second class of simulators is based on the Graam$ion method to calculate the quantum
transport properties, with the coupling to the leads bigitngduced via the self-energy. The advantage of
this approach is the well developed theory of the Grefemistions that also allows one to consider
inelastic scattering within the nonequilibrium Green’s figrctformalism. A very efficient and widely
used algorithm is the recursive Green’s function metf%dhat has been successfully implemented for
two-dimensional devices™[] and for small three-dimensional structures such as-namres 7. It's
main advantage is that it does not only yield the reth@een’s function that is connected to the S- or T-

matrix, but also the less-than Green’s function [21], tvhis needed if inelastic scattering to be



considered. The main drawback of the method is its c@etrito devices that can be discretized into

cross-sectional slices with nearest neighbor interactioily, a condition that cannot be maintained for

structures with more than two contacts, since additiooatacts inevitably couple more distant slices

with one another. For a detailed review of this methodgalesee the article by Lake al [20]. Thus,

although a large variety of methods has been developed ipaiedecades, the quantum-mechanical

ballistic multi-band transport calculation of large twodahree-dimensional structures or devices with

more than two Ohmic contacts still presents a significhallenge.
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