Simulation of Multi-Technology Micro and Nano Systems

Karti Mayaram

School of EECS Oregon State University Corvallis, OR 97331

Outline

- Introduction
- Coupled circuit/device simulation
- Advantages and applications to integrated circuits
- Examples of simulating microsystems
 - Microfluidic flow
 - Electroosmotic flow
 - Piezoelectric micropower generator
 - Phase noise of MEMS RF VCOs

Role of Modeling in Design

The Modeling Hierarchy

A Case Study - BSIM3 MOSFET Model

• Compact model development, implementation and validation takes several years

Circuit/Device Simulation

Circuit simulation

- Compact models used: inaccurate under certain conditions
- + Simulation of multiple devices in a circuit
- Device simulation
 - + Based on device physics: accurate
 - Simulation of a single device, no circuit embedding
- Coupled circuit/device simulation
 - + Accurate
 - + Simulation of complete systems

Coupled Circuit/Device Simulator

- Compact models for electronic components (BJTs, MOSFETs, ...)
- Accurate numerical models for various components
- Analysis capabilities supported by the circuit simulator

Coupled Circuit/Device Simulator

Advantages

- Simulate critical devices at the device level within a circuit
 - Solve partial differential equations describing devices coupled to a circuit simulator
- Predict performance of circuits in absence of compact models for devices
- Evaluate influence of process variations on circuit performance

Application Example – Single Event Upset in SRAM Cell

- Critical transistor modeled at the physical (numerical) level
- Other transistors modeled with compact models
- Alpha particle strike simulated with circuit boundary conditions

Simulation of Micro/Nano Systems

- Micro/nano device simulation
 - Finite-element methods (FEM)
 - Fast integral methods
- Simulation of complete systems
 - Lumped equivalent circuit representations
 - Macromodels derived from FEM analysis
 - Analog hardware description language (AHDL) descriptions

Limitations of High-Level Models

- Typically derived for small-signal conditions
- Not suitable for systems with feedback
- Cannot predict behavior outside range

reach substrate

Comb structure

reach limit stops

Coupled Circuit/Micro(Nano) Device Simulator

Microfluidic System

Micro Fluidic Simulation Example

Constant flow system

Simulator Interaction

⁺ R. M. Kirby, et al., "The NEKTAR code: Dynamic simulations without remeshing," *Proc. ICCT*, 1999.

Coupled System Simulation: 4 Physical Domains

Flow sensor: Flow to Temperature (thermal domain)

Micropump: Displacement to Flow (fluid domain)

Piezo-actuator: Voltage to Displacement (structure domain)

Summary of Microfluidic System Simulator

- Integrated simulator allows simulation of complete system with integrated thermal, flow, structural, and electric domains
- Fluid solver determines overall simulation performance

R. M. Kirby, et al., "An integrated simulator for coupled domain problems in MEMS," *JMEMS*, pp. 379-391, Sept. 2001.

Electroosmotic Flow

Simulation of Electroosmotic Flow

- An electroosmotic flow channel has fluidic and electronic components
- Physical model generation for fluidic channels requires significant time
 - SPICE3 for circuit-level simulation
 - EOFLOW^{*} for numerical simulation of electroosmotic flow channels
- ^{*} M. J. Mitchell, et al., "Meshless analysis of steadystate electro-osmotic transport," *JMEMS*, pp. 435– 449, Dec. 2000.

Simulator Interaction

Flow Rate Control System

• To avoid flow distortion, vertical velocity must be reduced

Proportional Integral Control System

Dynamic Behavior of Streamlines for the Electroosmotic System

Proportional control

Proportional-integral control

Simulation of a 10 x 10 Cross Channel Mesh

Simulation Results for 10 x 10 Cross Channel Mesh

One period of output signal

Spectrum of output signal

Summary of Electroosmotic Flow Control Simulator

- Various electronic control options can be evaluated
 - Proportional-integral control is better than proportional control
- Simulation of a complex network of interconnected channels possible

T. Dudar, et al., "Simulation of electronic control in electroosmotic flow channels," *SISPAD 2003*, pp. 235-238, Sept. 2003.

Piezoelectric Micropower Generation System

Piezoelectric Generator

Alternating pressure

- Mechanically force the membrane to vibrate
- PZT transform mechanical energy into electric energy

C. D. Richard, et al., "MEMS power: The P3 system," *Proc. IECE2001*

Numerical Example

- The electrode is taken as an equal potential region
- A sinusoidal pressure is applied
- Output voltage depends on electrode length Le
- Power delivered varies with load

Micro piezogenerator

Open Circuit Voltage Decreases With An Increasing Electrode Size

Matching Resistance for maximum power output

A Rectifier Circuit

The time evolution of the voltage across the load resistor is as expected

Summary of Piezoelectric Generator Simulator

- Simulation of coupling piezoelectric devices and complex circuits
- Numerical examples demonstrate effectiveness of the coupled simulator

C. Xu, et al., "Coupled simulation of circuit and piezoelectric laminates," *ISQED 2003*, pp. 369-372, March 2003.

RF MEMS VCOs

SPICE3 – EM8.9 Integration

G. Li et al., "Efficient mixed-domain analysis of electrostatic MEMS," *IEEE Trans. CAD*, pp. 1228-1242, Sept. 2003.

800 MHz MEMS VCO

• HP 0.8 µm process

D. J. Young, Ph.D. Dissertation, Univ. of California, Berkeley, 1999

Noise Sources in RF MEMS VCOs

Electrical-thermal noise

- Due to thermal excitation of charge carriers
- White power spectral density
- Flicker noise
 - 1/f noise

Mechanical-thermal noise (Brownian noise)

- Due to thermal vibration of suspended plates
- White power spectral density for low offset frequencies and colored for higher frequencies

Simulated Phase Noise

Comparison with Measured Data

Offset Freq.	Measured [†] $(Q_M = 1)$	Simulated $(Q_M = 1)$	Simulated $(Q_M = 5)$	Simulated $(Q_M = 15)$
10 kHz		-73.1	-77.6	-80.4
100 kHz	-110	-108.9	-109.1	-109.1
3 MHz	-139	-140.8	-140.8	-140.8

[†] D. J. Young, *Ph.D. Dissertation*, UC Berkeley, 1999.

Summary of SPICE3/EM8.9 Simulator

- Coupled SPICE3/EM8.9 simulator used for accurate simulation of RF MEMS VCOs
- Simulated results show the effect of the mechanical quality factor on phase noise

M. Behera, et al., "Accurate simulation of RF MEMS VCO performance including phase noise," *JMEMS*, April 2005.

Conclusions

Coupled circuit/device simulations

- Allow accurate simulation of circuits/systems
- Provide direct link between technology changes and circuit performance
- Useful for developing accurate compact models
- Need faster solution methods for PDEs
- Different coupling algorithms need to be developed for various problem domains

Acknowledgments

- Prof. Jacob White
- Prof. George Karniadakis
- Prof. Narayan Aluru
- Prof. Robert Kirby
- Dr. Oleg Mikulchenko
- Dr. Chenggang Xu

- Taras Dudar
- Manas Behera
- Volodymyr Kratyuk
- Sudipto De

- DARPA
- NSF