1 Double-barrier case

Please refer to fig 1 for a schematic.
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Figure 1: Double barrier case

Matching procedure
z = 0 boundary
Equating the wave function and the derivative give

A+B = C+D
iki(A—B) = —7(C—D)

Rearrange
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z = a boundary
Equating the wave function and the derivative give

Ce_’YQa “+ De’YZa — Eeikfia + Fe—iksa
—Y2 I:Ce*’ma _ De’72a] — ik3 [Eeik3a _ Feiik‘w
Rearrange
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The matrix A can be decomposed into

N= M=
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T = a +w boundary
Equating the wave function and the derivative give

Eeika(d+1ﬂ) +F67ik3(a+w) = Ge M40 +He'y4a
iks [Eeiks(a-i-w) _ Fe—iks(a-i—w)] = -y [Ge—74a _ He’y‘*a‘]
Rearange
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z =a + b+ w boundary

Ge4(atbtw) + Heralatbtw)

v [Ge—v4(a+b+w) - Hev4(a+b+w)]
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Ieik:5 (a+b+w) + Ke—ik5 (a+b+w)

(10)

(11)

iks [Ieiks(a—i-b—i-w) _ Ke—iks(a-i-b—i-w)]

(12)
Let @ = a + b + w and rearrange
a _ % 1— ,L-%i_ eliks+ya)a % 1 +i% e(ya—iks)o I (13)
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To summarize, we have
A I
g | = MiMa My MaMs MMz MgMoMio | - (15)
etksa () efik3(a+w) 0
My-Ms = [ 0 o—iksa 0 eiks (atw) (16)
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= [ 0 eiksw :| (17)
Similarly
e’ 0
M7 'M3 == [ 0 6_74[) :| (18)
Introduce the following short hand notation
_ 1 ,’y]' _ 1 .kj
ai; = 2<1+lk_,~)’ Bij _5(1+z%) (19)

Then
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If we call the first barrire matrix My, the well matrix My and the second
barriwe matrix Mg we get

A etiksa I
[ 4 ] = MMy Mg [ Y e ] [ L ] (21)
eiksaI
= | et | 22)

Transmission coefficient
Apply the first asymptotic condition, i.e., K = 0. Then we get

Al _ [mh mk etksoy
[B]_[mgl mi, 0 (23)
or
A =mi e (24)
or
k 1
T=2— (25)
1mf} |

For each individual barrier we have
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As a special case, when k = k; = k3 and 7, =y
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then
_ L iFYera L 2i2) L —va
= §<1+ZE)§(1_Z§)67 +2<1 Z1<;)2(1+’ )e !
= cosh(ya) + %(% — 5) sinh(va)
Recall that
coshf = %(eo+e_9)
sinh§ = %(69 —6_9)
1 Ray! kY L, 1 Y\ 1 kN .
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BN GAW
= 3 (k + 7) sinh(ya)
It is straightforward to show that
. iy kY
Moy =mis = -3 <E + ;) sinh(vya)
i k
mge =mj, = cosh(ya)— %(% - ;) sinh(ya)
det(MB) = M11M22 — M12M21
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Figure 2: Double barrier case

Now consider the double barrier case. The transmission coefficient is given
ks 1
=2 = (41)
i [mf,[?
mi
If ks = ky = k3 then T = —L— where
mi; |
L L —ikw R R
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myp = My1myie +mipymipe (43)

Resonance behavior may occurs in this expression through the phase factor
which may lead to concellation of terms that minimize m7}, giving rise to peaked
behavior in the transmission coefficient. To see this we will consider two cases.

1. symmetric barriers

2. more general asymmetric case

Symmetric barriers

For the case of symmetric barriers, the propagator constant is the same in
the well, left and right regiomns. Also, both barriers have the same width and
height. To simplify the notation, we write the matrix elements in polar notation

mlL1 = mﬁ = |m11|60“ (44)
where
2 2 Loy kN2 o
|mi|” = cosh®(ya) + Z(E - ;) sinh”(vya) (45)
6,; = tan~! 1(1 - E) tanh(ya) (46)
2\k vy

Then the matrix element m7; equals

mf, = |m11 |2ei29114kw + |m12|2ez’kw
— €i911 [|m11 |26i(911—kw) + |m12|2€i(kw—911)]
= ¢ifn [(|m11 |2 —+ |m12|2) cos(611 — kw)

(Imu|” = |maa|)
11| — |Mma2
4+ i sin(f1y — kw)]
1
= ¢ifn [(|m11 |2 + |m12|2) COS(911 — kw) +1 Sin(en — kw)] (47)
2 sin?(61; — kw)
|m1T1 ? = [|m11|2 + |m12|2] cos? (61 — kw) + 4}_/
1 — cos?(611 — kw)

2
{ [|m11|2 + |m12|2} - 1}
= 1+ N ~ - cos® (611 — kw)
(s P+ bmf? = 1) (o -+ 1)
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We also notice that

det(Mr) = det(Mgp)=1= |m11|2 - |ml2|2 =
mif =1 = il
|mu|2 = 1+ |ml2|2
Hence
imu? = 14 2mas]* - 2mai | cos® (611 — kw)

1+ 4|m11 |2|m12|2 COS2(011 — kw)

Consider a single barrier
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Thus
1 1
T o T 3 — 1 R1 2
|m11| 1+4T1T_1 cos? (611 — kw)
7

T2 4+ 4R, cos? (011 — kw)

(58)

T, and R; are the transmission and reflection coefficients of a single sym-

metric barrier.
minimum 7T = occurs when ¢,; — kw = nm which gives

L .m _m
min T T2 R TT214(1-Th) A+ T (T —1)
_ T?
 4-T(1-T)

(59)



T2
Tinin ~ Tl when T is small (60)

Thus the off-resonance transmission appears to be cascaded transmission of
two successive idential barriers independent of the well in between.
maximum 7'= Occurs when kw — 011 = (2n+1)% or 613 —kw = 2n+1)7

T2
Tmax = — = 1 (61)
T?

We want to find the wave vector, i.e., the energy of the incident particle for
which resonant transmission occurs. We will consider for simplicity the case
where we have strong barriers, i.e.,

v>k (62)
In this case
1~2 — k2
611 = tan! 2 ¥ . tanh(va)
™
— ) (63)
Therefore in this limit
kw—61 = kw-— g = (2n+1)g
T T
= (2 1)— + =
kw (2n + )2 t3
= (n+2)3
= (n+)m n an integer (64)

kw = mm — resonant levels are bound state levels of a finite well formed
between the two barriers and pronounced transmission of the electron wave
occurs , when the energy of the electron is aligned with one of these quasi
bound states.

On resonance, the electron wave is reflected back and forth in a way that
adds coherently. The unity transmission due to perfect match between the
barriers is broken by any asymmetry.

Asymmetric barriers

For the asymmetric case we have

T _ L., R _—iksw L. R _iksw
miy = MMy e + miamy;e (65)
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Figure 3: Asymmetric case
Use the polar coordinates
mi; = |m,]| eia"j (66)
to get
miy = [mby] e O o)
+  |miy||md| ei(12+021—kgw) (67)

where 615 = 021 = £% (Only true when k; = k3 = ks = k). Therefore
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The magnitude of |mf; | is
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The last result indicates that for energies off-resonance, the well does not play
an essential role, i.e., the double -barrier structure behaves as two independent
barriers.

Summary

Off resonance: — wave function decays exponentially in the classically for-
bidden region from the incident to the transmitted region, which is consistent
with the product of two transmission coefficients.

On resonance: — solutions in the barrier that exponentially grow from the
left and the right regions, which allows transmission to be large.

arrier case
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Figure 4: Tunneling probability of a symmetric double-barrier structure. Notice
that when the energy of the particle coincides with the energy level in the well,
the transmission coefficient equals unity.
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Figure 5: Tunneling probability of a non-symmetric double-barrier structure.
Notice that the transmission coefficient is always smaller than 1
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Figure 6: Tunneling probability of a non-symmetric double-barrier structure.
Notice that the transmission coefficient is always smaller than 1, but when the
energy of the particle coincides with the energy level in the well, it approaches
unity when the individual transmission coefficients of the barriers are close to
each other.
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Figure 7: Tunneling probability of a non-symmetric double-barrier structure.
Notice that at resonance the total transmission coefficient approaches unity,
since the transmission coefficients of each of the barriers are close to each other
(they behave as almost identical barriers).
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Application - Resonant tunneling diode

e Coherent tunneling — energy conserving process. The properties of the
barrier are completely specified by the transmission coefficient.

e Additional constraint in the analysis — transverse momentum is conserved
before and after the tunneling process.

e Graphical description of the tunneling process for the case when k, = k, =
0

Ecy - .

kzl QVA

Ecr

Figure 8: Graphical description of tunneling process

e Description in terms of Fermi levels.
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Figure 9: Graphical description of tunneling process in terms of Fermi levels.
ErR=FErr —qVa

e From the energy conservatoin requirement, we have

E=FE,.+Er = E.p+Er+Ecr
= Er+E —qVy (75)

Use the conservation of the transverse momentum

EtR = EtR = Et (76)

18



to get

E=E,;,+E =E,rp+E;— qVA (77)

W, PRy

E,p=E,r—q¢Va=
2m 2m

qVa (78)

e To connect the quantum mechanical fluxes to charge current, we need
to introduce the statistical mechanical distribution function that describes the
occupancy of the current-carrying states. For simplicity we will assure that these
distributions are given by the equilibrium Fermi-Dirac function determined by
the bulck Fermi levels on the respective sides of the barrier

1

Ez +E;—ErLr
1+ exp KTy

e As a further approximation, one needs to introduce irreversibility into the
formalism. For this case, contacts are assumed to be perfectly absorbing and a
particle injected from one side reaches the contact region of the other side, its
phase coherence and excess energy are lost through inelastic collisions with the
Fermi sea of electrons in the contacts.

= In this picture, current flow is essentially the net difference between the
number of particles per unit time transmitted to the right and collected with
those transmitted to the left.

e The expression for the current we are familiar with is

frr(Ez,E;) =

(79)

J ~ nev, (80)

where n is the electron density and v, is the carrier velocity. This form
assures that carriers travel with equal velocity. To get more accurate expression
for the current, we start with

n = [oE)E)E
d*k
= 2/ Wf(Ek) (81)
Therefore a more general expression for the current is
d*k
J= —26/W’sz(Ek) (82)

In the presence of tunneling, we need to take into account the tunneling and
the forward and backward propagatiomn of carriers. Therefore
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Tion =~y [ k0T (Bt ) (B, Biy)

2e
Jror = _W/d3kvz,RT(EzR;Et)f(EaEFR)

The net current is thus given by

J = Jisr—JrsL
G [ FHIE) 15 (Br) = v (Ery)]

Use the result for the transverse momentum

hk
Bopdbey, = kopdbe,  mu=hk=v=
vzrdk.r = v.rdk.p = v.dk, = h::: k.
Parabolic bands:
27.2 2
B.="% g = Mk k. = bk, = TdE,
2m m h2
Also
1
f(ErL) = B, — Epp
1+exp (2L ZFL
kgT
(Brr) = .
kT
_ 1
B Er —Epr + qVA)
1+ex
P ( kT

(85)

(86)

(87)

(90)

If we use all of the above results, we arrive at the following expression for

the net current

2e

+o00 [e%s) 2w
o _ / dk, / kedk, | deT(E.)v, [f(Err) — f(Ergr)]
oo 0 0

(27m)3 J_

- %, /+OOT(E)vdk /Ookdk x
= (27r)3 ™ z)Vz0Rz o taRt

—00

20



1 1
x —

1+eXp<Ez+Et_EF> 1+exp(EZ+Et_EF+qVZ>

kBT kBT
(91)
m
kidky = ﬁdEt (92)
e *1  m
J = -S| Z4E.T(E, M iE
onz J, BT )/0 PR
y 1 _ 1
E.+E; - Ef E.+E —Er+qVz
1 e L 1
+ exp ( T ) + exp ( T
(93)

The integrals of the form

F+a FE
[ )
F+a E+a
S| 0 1 —
+eXp< k5T ) +eXp< knT )
= —kTln |1+ exp _E+a
kT o

- —kBT{lnl ~In [1 e (_k%Tﬂ }

= kpTln [1 +exp (—k;LT)] (94)

Using this result we arrive at

_ emkpT [
J = -k /0 dE.T(E.) x
E, - EF E,—Er+qVa
In |1 _ZET 2R _ZaTorTdia
. {n{ +exp( keT )] n{ +exp( ksT >]}
F_Ez
14exp (L=
em*kgT [*° ( kT )
= _gnhBl E.T(E.)1
2R3 /0 dE.T(E;)In Er —E, —qVa (95)
l+exp| ———2=
kT
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The last expression is known as Tsu - Fsaki formula, where the particular
form was popularized in connection to resonant tunneling devices.

Logarithmic term = ‘Supply function‘ — determines the relative wight of
available carriers at a given perpendicular energy.

Low - T limit:
Er — E,
ln {1 + exp 1;917) }
1
— ——(Er —E,)0(Er — E,), E, < Er (96)
kT
Er —E, —
ln {1 + exp FTirq‘/A) }
1
— k—T Er — Ez - qVA)a(EF - Ez - qVA); Ez < Efr — qVA
B
(97)
Therefore
em*kgT 1 Er
J = o T { , ETE) (Br = )
Er—qVa
- [ BT - (Be - B - V) (98)
0
e Application to resonant tunneling diodes
T(Ez) = 6(Ez - EO) (99)

Under bias conditions, assuming that half of the voltage drop is accross each
of the barriers, we have

E() — EO — q% (100)
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Figure 10: Resonant diode with and without applied voltage

2

For resonant tunneling diodes at T = 0K the current expression simplifies

T(E,) =4 (Ez — FEy + qﬁ> (101)
to

em™

E
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Erp—qVa Va
— / dE.} (EZ — FEy + (]7) . (EF —-E, - qVA)
0

Erp VA
dE,d (EZ — FEy + q—) - (Er — E) non zero when

0 2

E, = Eo—q—A or

E, = Eo—qgor
V,
0 < Eg—q7A<EF—qVA
V,
(1) Eo—q7A>0
2
VA<—E0

=
(2)  Eo-q5 <BEr—qVa
use V4 #0= FEy < Ep

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

This term will contribute when Ey < Ep, which is not usually the case and

we can ignore it.
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Hence considering only the contributions from the first term, we get

* 2 2F,
J=_m (EF B+ %) for  Z(Bo=Fr) <Va< % (111)

T2
1.
2
Va = E(EO_EF)
q2
= EF_E0+§E(EO_EF)=0’ Jmin=0 (112)
2.
2E
Va = =2
q

em*

q2
Er-Ey+--Ey=FE =—-——=F 11
= Er—Eo+g g o= Er Jmax 5o br (113)

The plot of the current for different temperatures and different Fermi energies
is shown in the figure below.
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Figure 11: Tunneling current in a resonant tunneling diode obtained by using the
Tsu-Esaki simplified model and assuming coherent tunneling. In this example
the Fermi-level has been fixed. In a more realistic situation, the Fermi level needs
to be calculated based on the doping in the source and detector regions. Notice
that at T=300 K, when the Fermi level moves down, the current decreases,
which is what is going on in a realistic structure. Increasing the temperature
leads to a shift of the Fermi level downwards. This in turn, leads to a reduction
of the peak current when compared to the low-temperature situation.
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