Exercise: Resonant Tunneling Diode

Dragica Vasileska and Gerhard Klimeck
(ASU, Purdue)

Calculate the transmission coefficient of the double barrier structure for the following three cases:

(a) \(V_1 = V_2 = 0.4 \text{ eV}, \ L_1 = L_2 = 4 \text{ nm}, \ W = 5 \text{ nm} \).

(b) \(V_1 = 0.6 \text{ eV}, \ V_2 = 0.4 \text{ eV}, \ L_1 = L_2 = 4 \text{ nm}, \ W = 5 \text{ nm} \).

(c) \(V_1 = 0.6 \text{ eV}, \ V_2 = 0.3 \text{ eV}, \ L_1 = 4 \text{ nm}, \ L_2 = 5 \text{ nm}, \ W = 5 \text{ nm} \).

Notation: \(V_i \) is the height of the barriers, \(L_i \) describes the width of the barriers (\(i = 1 \) for barrier 1, and \(i = 2 \) for the second barrier) and \(W \) is the well width. Assume that the potential energy term \(V(x) \) is zero in the source, well and detector regions. Assume that the effective electron mass equals to \(m = 0.065 \times 9.1 \times 10^{-32} \text{ kg} \). Comment on the nature of the resonances with respect to the symmetry and the widths and the heights of the two potential barriers.