Exercise: Resonant Tunneling Diode

Dragica Vasileska and Gerhard Klimeck
(ASU, Purdue)

Calculate the transmission coefficient of the double barrier structure for the following three cases:
(a) $V_{l}=V_{2}=0.4 \mathrm{eV}, L_{I}=L_{2}=4 \mathrm{~nm}, W=5 \mathrm{~nm}$.
(b) $V_{l}=0.6 \mathrm{eV}, V_{2}=0.4 \mathrm{eV}, L_{1}=L_{2}=4 \mathrm{~nm}, W=5 \mathrm{~nm}$.
(c) $V_{l}=0.6 \mathrm{eV}, V_{2}=0.3 \mathrm{eV}, L_{1}=4 \mathrm{~nm}, L_{2}=5 \mathrm{~nm}, W=5 \mathrm{~nm}$.

Notation: V_{i} is the height of the barriers, L_{i} describes the width of the barriers ($i=1$ for barrier 1 , and $i=2$ for the second barrier) and W is the well width. Assume that the potential energy term $V(x)$ is zero in the source, well and detector regions. Assume that the effective electron mass equals to $m=0.065 \times 9.1 \times 10^{-32} \mathrm{~kg}$. Comment on the nature of the resonances with respect to the symmetry and the widths and the heights of the two potential barriers.

