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INFINITE POTENTIAL WELL

To solve the TISE for an infinite potential well sttoon the figure below (Fig. 6), we go
back to the step potential and examine the solutioegion 2 wherE<V, (the evanescent
wave) of the form:
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In the limit Vy - o , it is obvious thatlpz(x)| - 0 for any value ofx=0. Therefore, we

can say that in this limit, the wavefunction vangshéthe boundary of the infinite potential
step. We can generalize this by saying that the waggbn vanishes ak =+L /2 for
the infinite well problem.
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Figure 6. Infinite potential well.

Notes:

» The solution of the TISE for this type of potentiahstitutes a bound-state problem.
A significant difference between continuum and bound-gpatdlems follows from
the fundamental difference between the nature of $tases, i.e.

(a) the type of boundary conditions that they satisfy:
|qJ(x,t)|2 0 0[] -0 at all imes® bound states

|qJ(x,t)|2 0 0 [I] - 0 at any particular time=» unbound states

(b) Energy spectrum:

bound state® discrete energy spectrum
unbound state® continuous energy spectrum

» A major difficulty in solving the TISE for boundages is that we do not know the al-
lowed quantized energies in advance. We musittlfiede by solving for the Hamilto-
nian eigenfunctions that obey the appropriate bagndonditions:
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Solution to the particlein the box problem:

Since the patrticle is free inside the box, we camevthe general solution to the TISE in
this region as:

Ww(x) = Ae® + Be K = Ccoskx) + D sin(kx)

For this wavefunction to be a proper wavefunctiomust satisfy the two boundary con-
ditions atx=-L/2 andx=L/2. The one at=L/2 leads to:

c=0, k—ZL:nnﬁkn:Z%T, n=123...
CcoskL/2)+Dsin(kL/2)=0=
D=0, &_(2 1)_ﬁ =N 03

The top solution leads to odd parity Wavefunctlcum(x), and the bottom one to even
parity wavefunctionsp¢(x ,)of the form:

Wo(X) = \/7 sm[zﬂ[ x}
_ @2n-Dmt
Pe(X) = \/ECO{T X}

The discussion presented in this section suggeatsiie wavevector of the particle in an
infinite potential well is quantized, i.e. the gpbtunctions that satisfy the boundary condi-
tions imposed by the potential exist only for ditervalues of the wavevectors which, in
turn, leads to discrete energy spectrum:
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where E; is the energy of the lowest allowed energy lea&p known as the ground
state. The list of allowed stationary-state e calledcnergy spectrum

Important:

FINITE POTENTIAL WELL

» Consider the ground state of an infinite potentiall. The energy corresponding to
this state equals to
e

2
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Now, let's look at the final well solution to the BHShown schematically on Figure 7.
Due to the finite height of the well, there is a smjllof the wavefunction in the classi-
cally-forbidden region. To first order, the spiling thfe wavefunction can be ex-
plained as having a wider well with effective widthL. This, in turn leads to a lower
value for the ground state of a finite well when comgdoethe infinite well solution.
In the limit, when the barrier height approaches z1dA+w, we therefore arrive at
the continuum problem.
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Figure 7. A sketch of the wavefunctions for the lovwest energy levels for a finite
well.

An additional observation that follows from this figusethat the ground state wave-
function remains to be an even function, i.e. thetypafi the states does not change.
Therefore, the even and odd solutions of the TISE tiavéllowing form:

A® x<-L/2 Aef* x<-L/2
We(X) ={Bcoskx), —L/2<x<L/2, Po(X)=4Bsin(ks), —L/2<x<L/2
Ae X x>L/2 —Ae ®X x>L/2

where

kzzleandKzzmv#Z_E_
\ 7 V h

Due to thesymmetry of the potentialve do not need to impose four boundary condi-
tions at the two boundaries. The two boundary conditadrone of the two bounda-
ries are sufficient to determine the energy levelsesponding to the even and odd-
parity functions. This can further be simplified byraducing the singléoundary
condition on the logarithmic derivative

dlln y® (x)l e = dlln w® (x)l e



In the above expressionu(l)(x) and l]J(Z)(X) are the general solutions in regions 1
and 2 for some piecewise constant potential, gndepresents the boundary between

the two regions. It is straightforward to showtttiee equality of the logarithmic de-
rivatives at the matching point reduces to the twaditions we have used for step-
potentials, namely continuity and smoothness of wlaefunction at the matching
point.

» The application of the logarithmic boundary comditatx=-L/2 leads to the following
results for the even and odd-parity functions:

(a) Even parity function:
1

W““’{ 7)- Bco{l ij -exjsn -

2 2
K= ktar(&
2
(b) Odd parity function:
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Discussion:

The condition on the allowed wavevectors for thereparity functions that are solutions
of the TISE can be rewritten as:

[32
tan) = 5_2_1: f(&),
2mV _L /2mE
2 and E_E h—z .

Similar expressions can be obtained for the oddlyp@nctions, i.e. in this case one needs
to solve the implicit equation

where

BZ
—cotg) = 5_2_1: f(& .



The solution of these implicit equations can be obtameusing either the graphical solu-
tion method (see the figures below) or using, for exanpk Newton-Raphson method.
An important conclusion that follows from the graphisalution method is that, in the
limit of infinitely-small height of the well — 0), there will be only one solution to the
TISE and the energy of that level will coincide wihe top of the well. This is also clear
from the graphical solution to the problem.
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Figure 8. The even and the odd solutions of gefwvell problem. There are two bound
states in the well, one corresponding to the ewaation and the other to the odd func-
tion. Case (a) corresponds to the even functiauntisok, and case (b) corresponds to the

odd solutions.



The graphical solution results for the bound states aB2%hd 217.4 meV. The numeri-
cal solution to the same problem, using the schemeilbedan details in later section

gives E;=57.3 andE,=218.5 meV, which is in excellent agreement with the gecaph

analysis. The shape of the wavefunctions correspondirthese two energy levels is
shown in Fig. 9a. Also shown in this figure is the doluto the 1D TISE for an energy
value that is not an eigenstate (Fig. 9b). It is inguurto note that, even though the
wavefunction is continuous, it does not satisfy the atimeess condition (the wavefunc-
tion does not have continuous derivative).

05 e e e e ety 1.5x10%
i (@) ]
=] :
04 f ‘ 7 1x10*
03 - - 5000
I~ L 1 <
S r 1 =
o, I ] NS
0.2 -0 —_
< r j 3,
x i 1
> 5
01 --5000
L qu(x) 1
Of ) BN RN t_leOA
-0.1 _\ pr b Py ey by g by by by bl .-_l 5Xlo4
-20 -15 -10 -5 0 5 10 15 20
distance x [nm]
0.5 prrr ety 0.015
(b) ]
1 0.01
4 0.005

W(x)

01k 4 -0.005
L not smooth |

ol / 1 001

_Ol _n TN TN N N TR TR RO T YT N N T T T N T A N T 0 NN 1 |- _0015
-20 -15 -10 -5 0 5 10 15 20

Distance x [nm]

Figure 9. (a) The shape of the eigenfunctions correspgpialithe bound states of a finite
well. (b) Solution of the 1D Schrddinger equation foergy that does not correspond to
an eigenstate.



For this problem, one can also plot the transmissamfficient T(E) for particle energies
E>V,=0.4 V. Following the approach described for a step palemtith little bit more
algebra, one arrives at the following expressionHerttansmission coefficieli{E)

2 .2 -1
T(E):{1+M5in2(k2L)} ,
2

ALK
where

ki :—Zm(I;Z_VO) and k3 :—2;;E :

The variation of the transmission coefficient watiergy is shown in Fig. 10. From the re-
sults shown, it is clear that the transmission faoehts equals one for the following con-
dition:
2.2
kL=nm— E, =" " n?=010147 ,
2
2mL
which givesE;=0.1014, E,=0.4056, E5=0.9126 and,=1.622 eV. These values are con-
sistent with the results deduced from Fig. 10.
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Figure 10. Variation of the transmission coefftievith energy, for the quantum well
problem from Figs. 8 and 9.



Useful information:

A Professor at ASU (Physics and Astronomy Departm&htse name is Kevin Schmidt,
has created a web site on which you can find his ViSearddinger solver. This Web-
based applet numerically solves the one-dimensionab8iciger equation for a variety of
standard Hamiltonians and permits users to define tir motential functions and rap-
idly display the results. The applet has been designedrpyias a pedagogical tool. The
first time user may go directly to the applet and, whi brief introduction, try a few typi-
cal problems. The Web address for the site is:

http://fermi.la.asu.edu/Schroedinger/html/Schroedinger.html

The tool calculates the energy levels and the correspgpmavefunctions for finite wells.

TRIANGULAR WELL SOLUTIONS

When an electric field is applied to the surface pftgpe semiconductor, such as occurs
in a metal-oxide-semiconductor under bias, an n-typeasioe layer is produced at the
surface (see Fig. 11). When the bands are bent strasgily,strong inversion, the poten-
tial well formed by the insulator-semiconductor surfacel the electrostatic potential in
the semiconductor can be narrow enough that quantum-niealheffects become impor-
tant. The motion of electrons in the direction pediariar to the surface is constrained
to remain within this potential well and, if the tkiess of the well is comparable to the
electronic wavelength, size effect quantization leadsitiely spaced electron energy lev-
els. These energy levels are then grouped into subbeancts.of which corresponds to a
particular quantized level of motion in the direction padpeular to the surface. The
same quantization effect occurs in quantum wells, hetexdares and superlattices. In
the thermodynamic limit, the electrons are describegléne waves in the plane parallel
to the interface. In MOS devices, such quantum effglety an important role even at
room temperature, where the width of the inversioerlay of the same order of magni-
tude as the thermal wavelength of the carriers. Towexeit becomes necessary to solve
the Schrodinger equation for the subband energies andumatiehs in order to study
transport properties of inversion layer electrons.

The periodic crystal potential in the bulk of semiconmhgctaterials is such that,
for a given energy in the conduction band, the allowedteln wavevectors trace out a
surface ink-space. In the effective-mass approximation for silidhese constant energy
surfaces can be visualized as six equivalent ellipsoidsvotution (Fig. 11), whose major
and minor axes are inversely proportional to the s¥feenasses. A collection of such el-
lipsoids for different energies is referred to as ayall
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Figure 11. (left) Potential diagram for inversion pttype semiconductor. (right) Con-
stant-energy surfaces for the conduction-band of sitmwing six conduction-band val-
leys in the <100> direction of momentum space. The banana corresponding to the
centers of the ellipsoids, are 85% of the way to thikoBin-zone boundaries. The long
axis of an ellipsoid corresponds to the longitudinal &ffeanass of the electrons in silicon
my , while the short axes correspond to the transvéiesetiee massm .

In this framework, the 1D Schrédinger equation for aoted@ residing in one of
these valleys is of the form
n 92

{_ﬁa? +V(Z)}lpi (2) =Ey;(2)

where mD is the effective mass normal to the semiconductadeoiterface of the-th
subband from either the unprimed or primed ladder of subbandsy; and {; are the
energy level and the corresponding wavefunctions. For <tfB@tal orientation the six
equivalent minima of the bulk silicon conduction band spid two sets of subbands. The
first set Q\,-band) consists of the two equivalent valleys wittpleme effective mass
m=0.19m, and perpendicular effective mass=0.9Im,. The second sef\(-band) con-
sists of the four equivalent valleys wiuhp,:m =0.42n, andmy=0.19m,. The energy
levels associated with th-band comprise the so-called unprimed ladder of sub-bands,
whereas those associated with Madband comprise the primed ladder of subbands.



To calculate the subband structure for the MOS capaadter needs to find the
self-consistent solution of the Schrédinger equatiod,cdrPoisson’'s equation

%{ng—ﬂ = N3 ()~ NA(@ + D) -n(D

where ¢(z) is the electrostatic potentia(z ¥ the dielectric constantl,\l,;(z) and
Na(2) are the ionized donor and acceptor concentratinf®, and p(z) are the elec-
tron and hole densities. Note that the potentiatgynterm appearing in the Schrodinger
equation is related to the potentiglz in)the following mannerV (z) = —e$(z) + const .
The boundary conditions that one needs to imposeha following onesy(0) = 0 and
V() - 0. In the analysis presented here, we assumeztbatorresponds to th80O,/S
boundary. The quantum-mechanically calculatedmlaalensity is then given by:

n(2) = TNWE() |

whereN; is the sheet-charge density corresponding to grlewgl E;, andNs is the total
sheet charge density that is calculated using

|
_ _mkgT EF—Eij
Ng=YN; =Y In 1+exq—
ST T e { kgT

When the Poisson equation is formally solved fag plarticular problem, one finds the so-
lution

N AW 2 7
Vi (2) =V +V; = & - A z[l—ﬁj+e—z N{z—g(z—x)wiz(x)dx]

C € i

for z<W, whereW is the width of the depletion region. The firstnterepresents the
contribution from the fixed space charges wherbassecond term represents the contri-
bution from induced charges in the space-chargendthe so-called Hartree term). The
width of the depletion layer is calculated to be

W = ZSSC(pd
eN,

where eqy is the band banding shown in Fig. 12, given by

2
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In the above expressior,™ is the average distance of the electrons that resithei-th
subband from the interface, is the conduction band edge, angis the energy of the
lowest subband.

potential energy
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Figure 12. Schematic band-banding near the semicondustdatior interface, showing
the nominal conduction-band edge (thick line) and theesponding band-banding asso-
ciated with the fixed depletion layer charge only (time).

To obtain self-consistent solution to this problera mther formidable task for students at
this level. Because of this, in the rest of thistise we will only describe ways to find ap-
proximate solutions. The explanation for the numescddition of the 1D Schrédinger
equation, without coupling to the 1D Poisson equation, isritbesl in the next section.
The simulation tool SCHRED used for obtaining numergef-consistent results for
MOS capacitors witlp-type substrates and metal or poly-silicon gates, dewlapdri-
zona State University, and donated to the Purdue Semidondsimulation Hub, can be
accessed using the following link:

http://punch.ecn.purdue.edu:8000/

Follow this link to examine the capabilities of SCHREYou need to read the user man-
ual before you try to run SCHRED.

(1) Airy functions

If the inversion layer contribution to the potengakrgy is negligible compared to the de-
pletion layer contribution, for small valuesz)(z << W) one can approximate the poten-
tial energy profile by


http://punch.ecn.purdue.edu:8000/
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wherekE; is the electric field at the semiconductor-insulatwerface £=0). This is called
the triangular-potential approximation. It leads to tlwy Aquation of the form

1/3 2/3
2meESj _omE( #?
hZ hZ 2meE¢

2
Y g =0, where E:z(
dg

The solutions of this equation are Airy functiongé} and the zeroes of the Airy func-

tions are
2/3
31 1
=——|n—= , h=123---
n {2( 4ﬂ :

which occurs for z=0. This means that the energgl$é can be calculated using

1/3
2 2/3
En: h_ ms[n—lj , h= 12,3,
2m 2 4

The eigenvalueEg; are asymptotic values for largebut they are amazingly close even for
the ground state=1. The exact eigenvalues for the three lowesestiaave(n —1/4) re-
placed by 0.7587, 1.7540, and 2.7525, respectively.

Example:

Calculate the energy levels for a triangular padénwell by using the Airy function
method. UseNg =10"%cm™2, N gepl =5x10"em™, ey, =118¢, and m= 091my,.
Plot the first five energy levels.

Solution:
The surface electric field equals to:

E, :si(NS + Ngpy ) = 23x107 (V / m)
SC

The Airy function method gives:

o \1/3 2/3
En:[h} {MS[n—%ﬂ = 7896(n - 1/4)2/3(mev)

2m 2

i.e., we haveE;=65.18 meV E,=114.7 meV E;=155 meV,E,=190.6 meV ands=223.1
meV. Note that the separation of the levels dsa®lecause of the linear increase of the
well width. The wavefunctions corresponding tosthdive energy levels are plotted in
Figure 13.
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Figure 13: Eigenfunctions corresponding to the lowestgnargy levels of a triangular
potential well. Also shown in this figure is the shap¢he confining potential.

(2) Variational Approach

The triangular-potential approximation is a reasonapfgaimation when there is little
or no charge in the inversion layer, but fails whes inversion charge density is compara-
ble to or greater than the depletion charge deriSjiy, = N;W. At low temperatures
and moderately high inversion charge densities and (10&tation of the surface, only
the lowest subband of the two equivalent valleys vatigitudinal mass perpendicular to
the interface is usually occupied. In this case, atianal approach gives a good estimate
for the energy of the lowest subband. One can approxithatwavefunction of the lowest
subband with some trial function. The trial functiongeed by Fang and Howasd

3\1/2
b -bz/2
Yo(2) = {7J ze

whereb is a parameter which is determined by minimizingttital energy of the system
for given values of the inversion and depletion chargbs.total energy per electron, the
guantity that needs to be minimized, is then given by
2
h°b? 38N gep _662N| 1 3%2NS

— l L) = Y
E/N—<T>+<Vd>+2<V|> ~ * EoD £ b2 i 16€ ,.b

The first term represents the expected value of theikieeergy of the electron, while the
second and third terms correspond to the average potemgigdies of the electron inter-



acting with the depletion and inversion charge. Theofatf2 prevents double counting of
the electrons. After some algebra, one finds thavahee ofb that minimizes the average
energy per electron equals to

v o w13
b{lZmze N }

g
where

. 11
N" = Nogpi + - Ns

The energy of the lowest state is found after a stifaigtard calculation to be
€o :<T>+<Vd>+<vi>

and the inversion charge contribution to the poteatiakgy (Hartree term) reduces to
2
Vi(2) == N, F (1— e_bz)— ze_bz(z +1bzﬂ
€ i b 2

Numerical solution of the 1D Schrddinger equation

There are various ways in which one can solve tipengalue problem numericallylhe
simplest one is the shooting method that will be empthin the context of the example
shown in Fig. 14 representing an arbitrary potential@nerofile. For simplicity, one
usually assumes that the potential becomes infinise@e pointsz = z,;,, and z= z,,
which means that the boundary conditions for the swiatof the Schrédinger equation
are Y(z,,) = ¥(z,.) =0. The proper choice of these limit points depenasnuthe par-
ticular problem that one is solving. For examptethe silicon inversion layerz,,,=0,
whereasz,,,, can be any arbitrary point in the depletion layext is far enough from the
interface, so that we can assume with certaintytti@wavefunction has vanished.

The idea of the shooting method is as followsoni is looking for a bound state,
it starts with some small trial eigenvalge Upon integrating toward larger from z.,,
one can generate a solutigh (z), which increases exponentially through the otadigi
forbidden region and then oscillates beyond thetlehing point in the classically allowed
region. The integration becomes numerically unstdl@ne continues the integration past
the right turning point, due to the admixture of imdesirable exponentially growing so-
lution. Therefore, for each energy value, one gaesra second solutiagr (), by inte-
grating from z_,, to some smaller values. To determine whether tiergy that one



chooses at the beginning is an eigenvalue, one hasripazey(z) and ¢ (z) at some
matching pointz,. Since bothy"(z) and ¢/ (2) satisfy a homogeneous equation, their
normalization can always be chosen so that thefiwmctions are equal a,,. An eigen-
value is then signaled by equality of the derivegiat the matching point. If one approxi-
mates the derivatives by their simplest finiteetdi#nce approximations, discussed later in
the text, an equivalent condition is that

t= [ e-n-v-n]=o ,

where h is the step-size. The quantity can be either the value @f* at z., or the
maximum of ¢/~ or ¢ . If this condition is satisfied, then one has fduhe eigenvalue.
Otherwise, one needs to increase the energy amatréipe previously mentioned steps.
The use of a bisection method can be very effeativast location of the eigenvalues.
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Figure 14. (a)Schematic potential used in the discussion forsti@oting method. (b)
Form of the solutiongy™ and ¢~ at an arbitrary energy. The left turning poinused as
a matching point. Whea is an eigenvalue, the derivative is continuoughatmatching
point.

In the remaining part of this section, we explaiw one can numerically integrate
the 1D Schrodinger equation. If some arbitrarycfiom is known at some equidistant
node points (as shown in Figure 15), one can uglilseries expansion to represent the



first and second derivatives of this function in tewhghe values of the function at the
node points.
Xo—2h Xg—-h Xg Xg+h Xg+2h X5+3h

CCQ..

i-2 i—-1 i+1 i+2 i+3

node
Figure 15. One-dimensional equidistant mesh.
The procedure for obtaining the finite-difference repnest@n of the first and second de-

rivatives on a uniform mesh is outlined below:
* Use Taylor series expansion of an arbitrary fundifgn

of 2 of
f(xg+h)=f(xg)+h>|  +O(h%) fog=f +hom
0x X=X, I+1 OX|;

f(xog—h) = f(xg) - ho +0(h?) fi_y=f, pdt
X=Xg 0x|;

In the above expressioihsis the mesh size, arﬁ(hz) is the truncation error. On
the right, we have used a short-hand notationHerrtode values. Subtracting the
second expression from the first one gives theetedtfinite difference expression for
the first derivative at node point

of |
0X|:

_ fivn—fizg
2h

» Using the same arguments, we can also deriverite-flifference approximation for
the second derivatives:

=i(ﬂj vy = ficyp [ fia—fi _fi-fing]_ fig-2fi +fiy
dx\ dx ), h h h h h2

d2f
dx2

» Once we have the finite-difference approximationtfee second derivative, we can
utilize this result to obtain the finite-differenapproximation of the 1D Schrédinger

equation:
2 2 2
AV gw = B — S k2 p(x =0 |
2m dx2 dX2

where

k% (x )——[E -vV(x)] .



A simple substitution of the previously derived resulttfee second derivative gives:
2,2
llJi+1+(h Ki ‘2)4Ji Y1 =0 .

Having derived the finite-difference approximation the 1D TISE, we can now util-
ize the forward and backward integration schenteget ” and =~
(a) forward-integration scheme:

2,2
llJi+1:(2‘h K; )Ll—'i —Yi
(b) backward integration scheme:
2,2
llJi—1:(2‘h Ki )Ll—'i Wiy

The initialization of the wavefunctions goes asof@k: If x=0 (1=0) andx=Xmax (i=N)
are the boundary points of our integration domatirwhich we can assume with cer-
tainty that the wavefunction has vanished, then

lIJO:O, lIJN =0.

One also needs to use some small values at thieboeing node points£1 and i=N-
1), such as

Py =WYpy-1 =207°

to ensure that we get the non-trivial solution. eiperforming the numerical integra-
tion from the left and from the right, to avoid ofl@w and underflow, one has to re-
normalize the wavefunctions if they exceed somegtermined maximum value.

The eigenvalue is signaled if, for a given endfgyhe second derivative is continuous,
i.e. the function

f :h—ii[wfm_l —wfm_l]

goes to zero (this signals smoothness of the wagbfn). It is important to point
out that before one evaluatgit is necessary to match the solutions at thairigr
point iy, to ensure continuity of the wavefunction. Thergy variation of f is shown
in the figure below. These results were obtaimedaffinite quantum well from Figure
8 (L=7.5 nm,V,=0.4 V andm=6x10°* kg). Notice that the zero's btoincide with
the values for the energy levels that we obtairs#oguthe graphical solution method.

Important note:



The graphical solution method gives only the eigenvaloesaffinite square well,
whereas the numerical method gives us simultaneouslyigkaevalues and the corre-
sponding eigenfunctions for an arbitrary confining po&dnti

O3 [ T T T T T

L=7.5nm
V,=0.4eVv

02 f
m=6x10% kg

01|

-0.1

f (check on smoothness)

02 |

03 [ L L L L . L 1
0 50 100 150 200 250 300 350 400

Energy [meV]

Figure 16: Energy dependence of the functifor a finite potential well, that checks the
smoothness of the eigenfunctions. The zerofsdanote the energy eigenvalues for the
finite potential well from Figure 8.



