1 Harmonic Oscillator

Harmonic oscillators are useful models of complicated potentials in a variety of
disciplines including;:

— quantum theory of electromagnetic radiation

— study of lattice vibrations in crystalline solids

— infrared spectra of diatomic molecules

Actually, classical systems rarely execute simple oscillatory motion; more
often they undergo damped or forced harmonic motion. Even if particles execute
complicated harmonic motion, their small excursion about equilibrium can be
accurately approximated by the simple harmonic oscillator. Hence, the SHO
(simple harmonic oscillator) is a starting point for study of any system whose
particles oscillate about equilibrium positions.

Example 1

Consider a point moving along the circumference of a circle at a constant
angular frequency wg. The projection of the point z(t) is then given by

z(t) = Acos(wot + @) (1)

where wy is the so called natural frequency. The second derivative is

P
dt?

—wi A cos(wot + @) (2)
= e 3)

Figure 1: A point moving in a circular path

The above expression is the famous differential equation of SIMPLE har-
monic motion.
Example 2



Consider now mass on a spring. If the wall is immovable and the spring is
ideal, and if friction and gravity are negligible, then the force on the mass trying
to restore it to its equilibrium position g is

d2
F = mﬁf (4)
= —ki(z—2zp) (5)

where &y is the force constant.
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Figure 2: Spring system.

The trajectory of the mass object is then

Pz k

7 = —oo(¢—zp) (6)
= —wi(z—2p) (7

where
wo =1/ ®)

is the natural frequency that is related to the physical properties of the
system (the mass and the force constant of the spring).
The potential energy of the particle is simple given by

V(z) = —/de (9)
= —|—kp/xdx (10)
= %kpa,ﬂ (11)
= %mwng (12)



The total energy is just V' (x) + kinetic energy, i.e.,

2
p L 9 9
E = 2 - 1
om + 5T (13)
= const (conserved) (14)

As the particle oscillates back and forth, its kinetic energy and speed change
because its potential energy changes. To understand this, we need rigorous
derivation for V (z)

V(z) = %mwﬁ(w—azbﬂf (15)

— At equilibrium, potential

energy is zero and k.e. is maximum

At the classical turning point, k.e. is zero, and the p.e. is maximum, i.e.,

1
E = imwg(ar:m—alnz)2 (16)

=> Tym—2TE=0Tm

_ 2E2 a7
mwo

Near these points, the particle slows down, stops and turns around.

From the above observations, we can predict the outcome of a measurement
of the position of a classical SHO. During one period of oscillations, it is most
likely to find the particle at positions where its speed is the smallest, i.e., near
the CLASSICAL TURNING POINT. Later on, we will compare this prediction
with what quantum physics predicts for a microscopic oscillator.

Classical Probability Density

To define a probability, we must identify an ensemble, i.e., a large number
of identical, non-interacting systems, all in the same state. For macroscopic
systems, in a position measurement at a fixed time, all the members of the
ensemble would yield the same result. Thus, we will assume that the positions
of the members of the ensemble are measured at random times. We thus define
classical probability density

Pg(z)dz = probability of finding the particle
in the interval z to x + dx (18)

T, = i—’g is the time required for the particle to carry out one cycle of
simple harmonic motion then



dt
Py(z)dr = T (19)
— fraction of the period that the

particle spends in the interval z at z (20)
Now, consider EXAMPLE 1 assuming ¢ = —m/2. For this particular case

z(t) = Asin(wot) (21)
The time dt is related to the velocity v by

dx
= — 22
p (22)
= dt= de (23)
v
which leads to
wo 1
Py (z)dr = ﬁ;d&: (24)
Since
dx
- = 2
v g (25)
= woA cos(wo)v/ A% — 22(t) (26)
= woy/A? — A% sin® (wot) 27)
= woy A% — 22(t) (28)
we arrive at
_ w1
Py(z)dz = o I (29)

2m /A2 — 22(3)

This function is the relative probability that in a measurement at a random
time of the position of a macroscopic simple harmonic oscillator with energy E,
we will obtain a value in the infinitesimal range dx at x.

To find the normalized classical probability density, we must normalize it,
ie.,

[ " Py(a)ds =1 (31)



which leads to

1
Poy(z)dzr = T (32)
If the energy of the particle is E, we must have
mv? 5 o
~—~ ——
k.e. p-e
L 942 2 Lo o2
= imwoA cos®(wot) + imwoA sin®(wot)
1
= imu)gA2 (34)
Thus
2E
A% = 3 (35)
mwg
or
Py(a)ds = L
c\r)ar = 235 _ 2
]

2
1

_ Vmwg (36)
T \/2E — mwiz?

Pj(x) predicts that the macroscopic simple harmonic oscillator is least likely
to be found at equilibrium (x = 0), where it is moving most rapidly, and most
likely to be found near the classical turning points, at which it will stop and
turn around.
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Figure 3: The classical probability function for three energies. These energies
correspond to those of the ground state (n = 0), the first excited state (n = 1),
and the tenth excited state (n = 10) of a microscopic oscillator with mass m

and natural frequency wy.



The Quantum Simple Harmonic Oscillator
The Hamiltonian operator is

2 &2 1

2 2
A 3 — MWy
f=_ 2m dz + 2 (37)
T(x) V(z)

(1) Because V(z) increases without limit, it supports an infinite number of
bound states, but no continuum states.

(2) Because V() is symmetric, its eigenfunctions have definite parity.

We need to solve the time-independent SWE

n? d? 1

using the method of power series using the following game plan:

A CLEAN up TISE using intermediate quantities ¥(x) — ¥(§)

FIND THE SOLUTION IN THE asymptotic limit £ — oo, ¥(€) — x(€)
FACTOR OUT THE ASYMPTOTIC BEHAVIOR: 4(€) — AH(€)x(€)
DERIVE A DIFFERENTIAL EQUATION FOR H(¢)

H O o W

EXPAND THE UNKNOWN FUNCTION IN A POWER SERIES, i.e.,
HE) =) ¢& (39)
J
F PUT SERIES IN THE DE AND DERIVE RECURRENCE RELATION
¢; in terms of ¢;_;
G ENFORCE BOUNDARY CONDITIONS : QUANTIZE E

(A) Cleaning up of the TISE
We need to clean up the equation to minimize the number of symbols we
must manipulate. Start with

2y mwi , 2mE

ol h2a:1/1+ 2 Yv=0 (40)
Define
B= 15 (41)
and
§=px (42)



Then

d d dé
de | dédx
d
T (43)
e d(d
de? %(%)
Cd [, d) de
- &%) &
d2
ﬂQd—g (44)
or
mwo d2  mPwi 2 2mE] _
e - R B we = o
mwo &>  mPwi h ., 2mE] _
|: h d_é-Q_ h2 mw0£ + hz ] w(&) - 0
& J 2B _
[d—§2—§2+%7_ P& = 0 (45)
G (46)
i€ ve -
where
2F

This last equation is known as Weber’s equation. Since the solutions of this
equation are known, we can simply write it down, but we won’t learn anything
about the physics behind it.

(B) Asymptotic limit

When confronted with an unfamiliar DE, the first thing that one needs to
check is its asymptotic limit, i.e., when £ — oco. In this limit £2 > € and we
might ignore this term, to arrive at:

(s -¢) o =0 (48)

We used the fact that as & — oo, ¥(£) = x(§).



The general solution of this equation is of the form

Ae—€12 4 Bet/?

(49)

As & —, one of the terms, the term e€’/2 blows up. To get an admissible
solution to the TISE, we exploit the arbitrariness of the constants and assume

that B = 0. Hence

x(§) = A€

which means that

Y(E) = AH(EX(E)
= AH(g)e €/

(C) Factor out Asymptotic Behavior and Find DE for H(¢)
If we substitute the result for 1(£) into Weber’s equation, we get

d% = Ai—fze*fﬂ—AgH(g)e*ézﬂ
e dH _ e
— AH(&)e /2 — At=— a €/2 1 ACH(£)e /2
_ 4 TH e o, dH ey
= A b P24l et
— AH(&)e S /2 + ACH(€)e /2
Hence
2H o dH o
e \< 2482 \<
—4He€\<2+ 4§2H7Z€\<2 - 4§2H7/Z’5\<2 + 46He€\<2: 0
or
d2H
5 +(€—=1)H() =0
g2 £

This last equation is called Hermite differential equation.
(E) Expand H({) in a Power Series

(50)

(53)

(54)

—~

56)

(57)

We will try to find a solution for this equation be expanding H(£) in a power

series, i.e., assuming



&= ¢¢ (58)
j=0

We need to find the coefficients ¢; to obtain H(£). We can achieve this by
substituting H (&) in the DE, i.e., using that

dH = ,
= = Z 5]*1
dé =
= ) (G + & (59)
7=0
d’H

3 = 1)e;g? 2

I
.Mg

ag?

<
Il
N

I
Mg

(7 +2)(j + 1)cjs2€ (60)

.
Il
<

Hence

ZJ+2 G+1) c]+2§J—2§Z]c§] !y e—l)ch§j = 0 (61)
=0 =0

Jj=1

j=1

oo oo
Z]+2 (G+1 c9+2§J—2ZJc]§J e—l)chfj = 0 (62)
7=0 =0

e+ (e—1)co + Z [(G+2)(G + Dejpo — 2j¢5 + (€ = 1)e;] € (63)
=0

For this expression to be zero, we must have that

c+(e=1) = 0 (64)
(J+2)(F +Dejra —2jcj+(e—1)c; = 0 (65)
or
cc = (1—e)co, j=0
2j+ (1 —¢) (66)
j = ) _'1727
EAS G+0G+27




(a) Successive coefficients c;y2 and ¢; are related through a recurrence rela-
tion.

(b) The energy variable appears in the recurrence relation (very important).

We can use the recurrence relation to determine terms in the Hermite series
from the arbitrary coefficients ¢y and ¢y, i.e.,

c cyc
0 [1 + —252 + —4—254 + - ] even parity function
Co Ca Co

H() = (68)
c [{ + c—3§3 + 6—56—355 + - ] odd parity function
C1 C3 C1
It looks like that we are done. We can calculate the arbitrary coefficients
from the normalization of the eigenfunctions, but there is a major problem. The
problem is not the convergence of the series, since

el 2kl , 22

CJ+2£, 4 * - e i — 0 d’Alembert ratio test
c;é? G+DG+2)" j—ooo (©9)

69

The problem is what the series converges to, which brings us to the last

point of our plan of attack.
(F) Enforce boundary conditions

For |£] = o0, the series converges to e¢” which means that

Y(E) = AH(Ee €/ (70)
o Acte €2 (71)
o A (72)

Since the product is not bounded, it cannot be normalized and is thus not
physically admissible.

We can eliminate this problem by enforcing all the coefficients larger than
Cjmax 10 be zero by enforcing ¢, +2 = 0. Then

2jmax +1—€=0 or € =14 2jmax (73)

For any value of jmax > 0, the above condition forces the Hermite series to
be finite, and the resulting function is called Hermite polynomial, i.e.,

Jmax

HE =Y ¢&,  €=2ma+1 (74)
=0
Jmax = 0 = € =1 Ho(f) = ¢
Jmax = 1 = € = 3 Hl(f) = 615 (75)
Jmax = 2 = € = 5 Hs (5) = ¢+ 0252
Jmax = 3 = € = 7 Hj (5) = &+ C3§3

11



where

1—e¢
Cy = 2 Co (76)
1-5
= 2 Co (77)
= —260 (78)
24+ (1—¢
o = 2029, (79)
_ 2+1-7 (50)
6
4
= —601 (81)
2
= —501 (82)

Here we have labeled the Hermite polynomials with the index n = jyax- The
energy variables is then

e = 241 (83)
E,
= — 4
o &)
or
E, = (n+3) hwo (85)

The requirement that H,(£) is a finite polynomial restricts the energies of
the simple harmonic oscillator to E,, = (n + %) huwo

Again, we have uncovered a subtile relation between mathematics and physics,
the latter limiting the solutions provided by the former:

boundary conditions ‘ = ‘ energy quantization (86)

Choosing ¢y and ¢; to be equal to 1, we can now construct the first four
Hermite polynomials, i.e.,

=1
3 - 2

122 — 48 -2 (&7)
E-26 o 81

SEEE

TN TN N N

MMM
Il

The Hamiltonian eigenfunction v, (x) of the SHO is now

12



Un(z) = A H,(Bx)e 7%/ (88)

The corresponding eigenstates are
1
En:(n+§)hw0, n=20,1,2,--- (90)

The only parts that need to be worked out are the normalization constant,
for which it can be shown that

32 1/4 1

0=(%) 7o 1)

The corresponding wave function is then

_ p? Y —p%z?/2
@)= (2) ot (oae (92)
Here is a summary

Ho(§) = 1 (93)
Hi(§) = 2¢ (94)
Hy(§) = 48 -2 (95)
H3(¢) = 8 —12¢ (96)
Hy(6) = 166" —48¢2 +12 (97)
Hy(€) = 3265 — 160 + 120¢ (98)
Hg(6) = 645 —480€* + 72062 — 120 (99)
H;(6) = 128¢7 —1344¢€° + 33606 — 1680¢ (100)
Hg(€) = 25668 — 358468 + 124406 — 1344062 + 1680 (101)
Ho(€) = 5126° — 921667 + 48384¢5 — 806406 + 30240¢ (102)

13



ghWO (%2) e e—ﬁ2fc2/2
4
1 %hwo (ﬂﬂ—Z)l/ \/EQﬂwe_ﬁ z%/2
1/4
2 gﬁwo (%2) \/% (4/62~T2 _ 2) o2 /2 (103)
1/4
3 %th (%2) / \/g (853.%'3 _ 125;1:.) e—,@2w2/2
9 32 1/4 I 44 5 o 2.2
4 Shoy (£)7 /5 (16841 - 48522 + 12) 0"
1/4
5 Hhwo (%) ! \/ 50 (326°2° — 1603323 + 1208z) =77 /2

The SHO - The Physics

In the previous section we derived the mathematical properties of the SHO -
the eigenfunctions and the corresponding eigenvalues. Here, since our ultimate
goal is the physical insight, we will focus on the statistical properties of this

system.

(a) Classical turning point

The classical turning point is defined as the point where E, = V (z,,) or

1
(n + %ﬁwo = §mw§mi) (104)
Hence
Fuw
2 (2n ;:g 0 (105)
0
2 1
(2n+ 1)k (106)
mwo
2n +1
2 1
o + "ﬁ—;’ (108)

(b) Probability density P,(z)

P, (x) tells us what to expect in a position measurement on an ensemble of
SHO’s in the n’th stationary state. There are several differences between the

classical and quantum oscillator.

(1) The classical oscillator cannot penetrate into a forbidden region. No
matter what state is in, the quantum oscillator does not penetrate into the

classically forbidden regions.

(2) For small energies, the quantum physics predicts that the particle is most
likely to be found in the center. Contrary to this, classical physics predicts that
it is most likely to be found near the classical turning points. At higher energies,
the two essentially predict the same result.

14
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The following are handy integrals of eigenfunctions of the SHO.

. mwo
h= V &
o0 d B/ m=n+1
/_oo ¢;($)%¢m(a§)dm - -85 m=n-1
0 otherwise
o d 5/ m=n+1 (109)
/_oo Un(@)egpbm@dz = 55 m=n-1
0 otherwise
[e) d % m=n
| v fym@d = { VOIED
- 0 otherwise

(c) Position and momentum expectation values and uncertainties

(@) = /_ U () 5n (2)d = 0 (110)
N

even or odd functions
the product is an even

number

h [ Y,
W = [ i@ tar=0 (111)

— even — odd
odd — even

knowing the expectation values of position and momentum makes the eval-
uation of their uncertainties easier. For example

(Az),

I
—~
8
€
~—
3
|
N
&
~—
Iw

(112)
= V=), (113)



(Ap)n = V(P*)n— (D)2 (114)

= VP (115)
where
(), = /mw:(x)x2wn(x)dx (116)
o] 2
W = - [ i) e (117)

Using the results given in the Table, we have that

2n+1

2 —
@ = 5 (118)
2n+1
= =T 11
2mwg [k (119)
1
=)
_ (nt5) e (120)
mwg
E,
= 121
mws (121)
Thus
E
Az), = n 122
(a2) = (122)

— The position uncertainty increases with

increasing energy (i.e., with increasing n)

At first glance, the evaluation of the momentum uncertainty looks very dif-
ficult since, in the position representation, p?> = —h?d? /dz®. We can avoid this
complication by taking advantage of the TISE

2 d%y,
o St = (B~ V(@) n(a) (123)
or
2y,
~RE = 2m[E, — V(@) Yu(a) (124)
= p’¢n (125)

18



Using the above, we can get much simpler expression for this expectation
value, i.e.,

#*) = (Bn-V(z))2m (126)
= 2m |E, — %mwg(xz)n] (127)
: 1, B,
= — Smw?2 12
2m _En 2mw0mw3] (128)
= om|E, - %En] (129)
— mE, (130)

This simple result gives the equally simple momentum uncertainty

(Ap)a = mE, (131)

Il

(n + %) Fwom (132)

(d) The Heisenberg Uncertainty Principle for the SHO
Using the expressions for the position and momentum uncertainties for the

nth state (stationary) for a SHO, we can calculate the uncertainty product, i.e.,

(A0)(Ap) = [t /mE, (133)
En

= o (134)

= (n + %) A (135)

The uncertainty product satisfies the uncertainty principle in a special way:
for the ground state (n = 0) it is equal to h/2, identically what we obtained for
a Gaussian function.

A Simpler Approach with Operators

The normalized eigenfunctions of the harmonic oscillator all take the form

() = (5—2)1/4 L7, (€)e €2 (136)

™ 2np!

where & = fz.
For the Hermit polynomials H, (&), the following two recurrence relations
hold

19



1
§Hn = nHnp1+ 5Hnp (137)
d
d§
Using the above two equations, one can obtain a relationship between eigen-

functions of the harmonic oscillator, which belong to neighboring quantum num-
bers

H, = 2nH,_, (138)

1/4
Ha(6) = (ﬁl) b€ /2T (139)
1/4
Hoo(6) = (ﬂl) VI Dl () (140)
S\ M4 ,
Hon(6) = (ﬁ—) VI = D1 (€)eE? (141)

Thus

1/4 1/4
s(%/jws)ef/z gl = o (2 VT D]
1/4
+ 5 (F Vi

(142)

v
v Jh -2 = ¢¢n_1<§)+% D+ Vi (6)  (143)

or

0n© = | 39n1O + | "5 0 (141)

From the above we get

a | (x\ie ,/?# W\ /7/—n—

bR l(ﬁé et /? n!wn(@] =2n (Wé et 2\ /2n A (n = 1)! p_1(€)
(145)

20



Ve Wﬂ () + 7‘/2 %] _ znfé/z T (146)

d¢n \f Vs (6) = Epn(€ (147)

We can now rearrange the above equation so that both sides of the above
two equations look alike

. \f baa(€ —\/gwn_ﬂo— "lya© ()

d¢" \f Yoa(© /" (©) (149)

Adding and subtractlng gives

@+ 22 = 2@+ /%ﬂ Ynia (6
by fpna© - /%5 —

= V2nin 1(8) (150)

ehn(e) - W = /; w1 (6 + 1/ 2 L (6)

d¢ 2
- \/%L n—1(€)+vn-2|_1¢n+1(§)
= 2/ (®
= V2V + 1ng1(é) (151)
or
1 0
? E+ o2 65 Yn(€) = Vnbn_1(§) (152)
ﬁ 6_6_5 Yu(€) = Vn+1¢,11(8)

With the above two equations, we can evaluate the neighboring eigenfunc-
tions 9,1 and ¥, 1, provided that v, (£) is known. We can define the operators
(for brevity)

21



>

- 5l %) 12)

T
lowering operator (154)
1 0
ot = —e—-= 155
o = () (159
T
raising operator (156)
Now using the result previously derived % =0 6{ we can express a and
at as
1 /| h O
— —_— 157
V2 < z+ Mwo 8:1:) (157)
mwy [ . A 0
— = 1
2h (m+m 06x> (158)
mwo ip
— e 159
2h (a: + mwo ) (159)
1 mw h 0
at = — il SR G 1
@ 2 ( h v mwo 6;3) (160)
mwo (. ip
= J==2(2-— 161
2h (m mw()) (161)

With the introduction of these operators, we can simply write

by = /nthn_1 (162)
and
ath, = vVn+ 1 (163)

We now want to turn to the properties of these two operators
(1) The wave functions 1),, is an eigenfunction of the operator product a'a
because

tag, = alvign (164)
= Vavdn (165)
= n¢n (166)
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We therefore can define a number operator N = aa' such that

N, = napy, (167)

Hence the eigenvalues of N are n, and the eigenfunctions are 1,.
(2) From the definitions of a' and 4, it also follows that they satisfy the
commutator relation, i.e.,

[a,a'] =1 (168)

[a,a' Y, = (aa' —ata)y, (169)
= &m¢n+l - &T \/ﬁ"/}nfl (170)

= (n+ 1)y, —n, (171)

= Yy (172)

= [a,af]=1 (173)

(3) By successfully applying a' on 1, one is able to calculate all eigenfunc-
tions starting from the ground state g for which a1 = 0. Thus, we can use

ay =0 (174)
and
atp, = VnF 1Y (175)
(176)
e — 1 afy (177)
n+1 \/TL—-l-]. n

to generate all the eigenfunctions. This is much simpler than using the brute
- force method, which we described previously. If we iteratively apply the above,
we will get

P = %af% (178)
Py = %af% (179)
- Ll
= ﬁa \/Ia o (180)
)2
= (f/% o (181)

and

23



(at)?
Vn!

The differential equation for the ground state is

n = Yo

ay = 0=

Yo _
§¢0+8—§ = 0

do _ _

b T kT

Yo = ATES

If we normalize it, we will get

Yo = (ﬂ_z) " e /2

™

which coincides with our earlier results.

(182)

(183)
(184)

(185)

(186)

(187)

(4) We can also represent the Hamiltonian of the system in terms of & and

af. We know that

O L
= om + 2mw0:1:
and
. mwy [ p
= — (T +i—
2h mwo
ot = JTe0 (5 P
2h mwo
Now if we calculate the product
aat = T (5 ) (54 2
2h mwo mwo
PPN P 2
= D0 (g B2 ;P P
2h mwo mwy  (Mmwp)?
mwo®? P2 i (p% —2p)
= e l—

2h 2mwoh 2R —ih

mwod? P i

2h 2mwoh 21

(—ifh)

ata =

24

(188)

(189)

(190)
(191)

(192)
(193)

(194)

(195)



or

1 1 .., P
ata + = - Zmetate P
(a a+ 2) hwo 5 Mo + o (196)
= H (197)
ie.,
. a1
H = aa+§ hwg (198)
The energy eigenvalues are then
Hyn = Enn (199)
1
= (&T&TE) Fiwothn (200)
1
- (n+§) ot (201)
ie.,
1
E, = (n + 5) hiwg (202)

Interpretation of a' and a

The ground state (n = 0) has the zero-point energy Ey = 2. Since the
energy spectrum of a harmonic oscillator is equidistant, the state 1, posseses
and energy value that is larger by the term nhwg. If we distribute this energy
to n energy quanta fiwg (quanta of the oscillator field), we will call these energy
quanta PHONONS. Then 9, is called an n - phonon state which in Dirac’s
notation is

Yn = |n) (203)

The “ket” contains the number of phonons in that state. The zero-point
state |0) is called VACUUM. In this notation

aln) = v/n|n — 1) (204)
and
afln) = vn + 1|n + 1) (205)

Now, the following interpretation is appropriate:
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— if acting on the wave function, the operator @ annihilates one phonon at
a time, whereas a! creates one. Therefore, we can call at and @, creation and
annihilation operators. N os termed the phonon number operator since

Nin) = n|n) (206)

where n is the number of phonons of the corresponding states.

En{hWe
. | H2 J 13>
i 1 /
Hnni kilah sz
4 riktadow T / 2y
/-'/ 3z TN
L/
A\
(Cﬁj ’D W= oY
) —» ¥
creadion o[ +wo
phonous

Figure 6: Energy levels of the harmonic oscillator

The introduction of the phonon representation is often referred to as SEC-
OND QUANTIZATION.

Example

Using the creation and annihilation operators, compute (z?) and (p?).
The operators & and a' are defined as

. fmwo (. ip
=4 /— — 207
“ 2h (m + mwo) (207)

and
ot [mwo (. P 9
a ~h (m mw()) (208)
where
Y = /mby (209)
and
at, = vVn+ 1, (210)

or in Dirac notation
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aln) = V/nln) (211)

and
We can calculate & and p by adding and subtracting the expressions for a
and at
at+at = 2 /mz_?@ (213)
2mwo
LT (214)
2= h (fl + dT) (215)
—V 2muwg
G_at = 9, /Mo 1 i (216)
2h muwy
= \/T ip = (217)
B mwoh b
h
p= ’\/@ (@' -a) (218)
Now
(@) = (nlz*In) (219)
h
B a+af)” 22
Smug 1 (@ T A1) (220)
= 2,:% (n|a® + aa + ata + a™|n) (221)
h a g -~ ~ A
= 2w [(n|a®|n) + (nlaa’|n) + (nla’aln) + (n|at?ln)]  (222)
where

(mlith) = (lav/aln - 1) (223)
Vnvn — 1{n|n - 2) (224)
0 (225)
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Thus

For the expectation value of the momentum squared, we have that

Hence

(nfa'?In)

<p2>n

(nfaa’ln) =

(nla'aln)

vn + Inla|n + 1)
vn + 1vn + 1{n|n)
(n+1)

Vatnlatn - 1)
= Vava(nln)

= n

vn + 1{n|at|n +1)
vn+1vn + 2[(n|n + 2)]

0

I )@ — Pl
—m;‘)h(maﬂ —ata—aat + a|n)
—muzjoh[—n —n—1]

m;’(’h(m +1)

1
CT— (n+14n)

2n +1
2mw0(n )

hwo(n +1/2)
mws

En

mw

muwohi(n + 1/2)

mkE,

28

(226)
(227)
(228)

(229)
(230)
(231)

(232)
(233)
(234)

(235)
(236)
(237)

(238)

(239)
(240)
(241)

(242)

(243)
(244)



2y, = 24
@ =t (245)
and
(p*)n =mE, (246)
We also can calculate
@ = /o (nla+alln) (247)
) = G nla+a'ln
= L [(n|&|n) + (n|&f|n)] (248)
2mwy
= 0 (249)

@ = i/ nlat ~aln) (250)
= i,/m‘goh [(nla®|n) — (n]aln)] (251)

= 0 (252)
Hence
AznApn = V(@) 1?): (253)
= rfc:(% mE, (254)
_ f_g (255)
Az,Ap, = h(n+1/2) — identical to what we had earlier  (256)

Motion in a Magnetic Field

An interesting example to consider is the motion of an electron orbiting
around magnetic field lies. Classically, when the electron moves in an electro-
magnetic field, the Lorentz force acts on the particle

F —e[E+ v x B] (257)

= —e[E+ Eind] (258)
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The electric and magnetic field strengths can be expressed by the corre-
sponding potentials ¢ and A according to

F = —e[-Vé+Ejq] (259)
hdk
_
= = (261)

The induced field E;,q can be found from the Faraday’s law, under the
assumptions that E = 0, i.e., ¢ =0, or

OB
VxEjpg = 5 (262)
0
= —a(v x A) (263)
O0A
= -Vx v (264)
Thus
O0A
This means that
dp O0A
i —e ( 5 ) (266)
O0A
— putinln 2
T (267)
i( —eA)=0 (268)
dt ‘P -

The last expression suggests that the proper total momentum to use in the
Hamiltonian is just

p — ik —eA Pierls substitution (269)

We want to find the solution of the TISE (stationary Schroedinger equation)
in the absence of any external potential, i.e.,

” V) =E 270)
oV ¥ =Ey (
(p—eA)?

A — Y =Ey (271)
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Assuming that the magnetic field is along the z - axis we can choose the
vector potential to be of the form

A = Bxa (272)
= Aya, (273)
where a, is the unit vector along the y - direction. This particular choice

of the vector potential is known as the Landau gauge. The B will be oriented
along the z - axis can be proven from the definition of the vector potential, i.e.,

B=VxA (274)
Thus
Gy Gy G,
0 0 0
B = |5 3 o (275)
A, A, A,
C(0A. 0A,)\ . (0A. 0A\ . (84, A,
= - ) - - e 2
aw<8y 8z> ay<6x 8z)+az<6$ 6y)<76)
or
0A, 04,
= ] 2
B, oy 5 (277)
0A, 0A,
B = 5 " (278)
0A 0A
B, = v 9% 2
or oy (279)

Since A, = Ay = 0 and A, = zB we have that B, =B, =0, B, = 2 A, =
3%(353) = B. This completes our proof that B = (0,0, B).

Now let’s go back to the solution of the TISE, which can also be written im
the form

(p—eA)?  p2 P, P e e?A?
2m - 2m+2m+2m 2m(p A+tA-p)+ 2m (280)
4
e?A2
2m
P-A+A-p = pA,+Ayp, (281)
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Hence

2
'y Dy
H -
2m
A

2m
2

2m

Pz
2m

ho h o
= —-—zB B—— 282
i ayw T i 0y (282)
= oph2 (283)
i Oy
= 2xBp, (284)
2x Bk, . .
= %hz (285)
= 2uBlk, (286)
h2k2 2 B 2,22
y  PL _exB ., €
P &2 2
om | 2m  wm T o (287)
2 2 2p2 27.2
p2  €’r’B ,erB h*k;
Py _ 2
Tom T Tom L hm Ry + 2m (288)
2 2 2
2 1, [, _ekh  [hk,
P~ (eB _2 My 2
+ 2m + 2m (eB)” |z heB + eB (289)
2 2 2
p; 1 eB 9 hky hky
“m (£ —og (2 My 2
2m 2m<m) v m(eB + eB (290)

At this point we may introduce the following two important quantities

eB
We = —
m
h
I = (e_B

cyclotron frequency (291)
hky
= B
= kl} (292)
1/2
) magnetic length (293)

With this new set of variables, the Hamiltonian of the system simplifies to

If the wave function v (z,y, z) has the general solution

2
1
5—; + Emwi (z® — 2zm0 + 73) (294)
P2
ﬁ + Emwf (.’L‘ — .730)2 (295)
Y(@,y,2) = VTR g(z) (296)
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then

2 h2k2
(@) = o =u(e,y,2) (207)
= Ez¢($ayaz) (298)

which leads to

Bablonsd) + |- dmuile — 20 le.0.2)
= Ey(z,y,z) (299)
or
g+ gila = )| 8(a) = eo) (300)
2m 0x2 2

where € = E — Ey. With the substitution ' = z — =z, we arive at

[_ﬁ_z‘i + gmels| o(e') = o) (301)

Once again, we have the equation of a harmonic oscillator. From the above
equation, we can immediately write down the energy eigenvalues

1
en:(n+§>ﬁwc, n=01,2,- (302)

and the corresponding wave functions

1 4 mw 2 mw
N — ¢ —mwc(z—z0)*/2h Clmm
dn(z) 5ot \ Fr e H, ( 3 (z mo)) (303)

The total energy is then given by

R2k2
By = et 5> (304)
1 k2
= (n—|—§> huoe + = (305)

Neglecting the motion in the z - direction (z, = 0), the energy E,, is quan-
tized.

Now let’s turn our attention to ¢,(z). For a given ky, ¢,(2') os localized
in the x -direction, but not in the y-direction. This result is unexpected, for
both directions should be equally represented. However, as we have seen above,
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the energy is independent of k,, so that we have infinite degeneracy. It can be
shown that wave packets of the form

Yk (2,9, 2) = / (k) WR o) g (2)dk, (306)

—0o0

where ¢(k,) can be chosen so that the solution is localized in the y-direction
as well. Such bound states in the zy - plane are unrestricted in the z - direction,
i.e., along the direction of the magnetic field B. They correspond classically to
electrons orbiting perpendicular to B, but moving with a constant velocity along
B and are called Landau states; the energy levels

1
€n = hw, (n + 5) (307)

are called Landau levels.
The classical turning point is given by

1
§mwg (Tn —20)? = €n (308)

i.e., it is found under the assumption that the kinetic energy is zero. Then

Tpn—To = Tn (309)

(310)

(311)

where r,, is the natural cyclotron radius of the harmonic motion (classically)

S 2h(rTLn-|(;1/2) (312)
h(2n +1)

meB/m (313)

= \/g\mn 1 (314)

= IpV2n+1 (315)

rn = vV2n + 1lgp — radius of the harmonic motion of the electrons in the
n-th level.
3D Systems
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As previously described, in the 3D system, the motion of the electrons in
the presence of a magnetic fields is described by the Harmonic oscillator model
and in the plane perpendicular to the magnetic field, the energy is quantized
into Landau levels, i.e.,

1 h2k2
E, = hw, (n + 5) + 2mz (316)
The wave functions ¢,, are centered at a point
Ty = kyl% (317)
h
= —k
L (318)

From the equation for F,, it is easily seen that the quantum states in the k
- space are located on cylinders, with the symmetry axes along the z-direction.
For the x — ymotion, states are characterized with the cyclotron energy (n +
1/2)hw,, located on circles with radii

. 1
or
2 1
k2 + k) = h_g” [(n + 5) hwc] (320)

The degeneracy of a simple - spin Landau level can be found from the number
of possible cyclotron orbits in the crystal. The assumption is that the center of
th quantum state is within sample boundaries

hk
0<x0<Lw:>0<kylf5<L<:c:>0<e—By<Lw (321)
or
B
0<ky < %Lz (322)

B
That means that the number of possible states in the range [O, %Lz] is

(323)

= —I,L, (324)

= ZIL,L, (325)



i.e., the DOS per unit area is eB/h.
Now if we assume that in the 2D - plane we have the single spin DOS -
function m*/27h?, then in the energy range hw., the number of states is

m* eB m
c = ) 2
ey 2 m* h (326)
eB
= — 327
X (327)

This is identical to what we previously calculated, i.e., the average density
of states in a quantized magnetic field is unaffected. Instead of having a 2D
continuum of states, these states are collapsed in a single degenerate Landau
state.

5l Erftwe

Figure 7: Landau States

£ 1'
5)7.. (E2)
& s/l (E)
1z (Eo)
> B

Figure 8: Low Temperature
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2D - system

In 2 D hereto-structures, with a magnetic field perpendicular to the layer
plane, the same Landau quantization occurs. However, the effect is even more
pronounced as the z-motion of the carriers is also frozen by the confining po-
tential leading to a “completely confined quantum limit”

Al
| |
'—"‘_'"—-lkw«.
Ef *}-FE:
‘m-l
. oz
Pl 2 ol)
Bb=o0 £ B+o

Figure 9: The energy level structure is made up of a ladder of cyclotron levels
for each confined state, each level having a singular DOS with a degeneracy
eB/h
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