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Electronic Band Structure Calculation

The basis for discussing transport in semiconductaitgeisinderlying electronic
band structure of the material arising from the solutiortted many body Schrédinger
equation in the presence of the periodic potential ofattee, which is discussed in a
host of solid state physics textbooks. The electroniatisos in the presence of the

periodic potential of the lattice are in the form db&h functions

Wni =Un (k)€ (1)
where k is the wavevector, and labels the band index corresponding to different
solutions for a given wavevector. The cell-periodic fiorg un(k), has the periodicity of
the lattice and modulates the traveling wave solutisn@ated with free electrons.

A brief look at the symmetry properties of the eigenfioms would greatly
enhance the understanding of the evolution of the bandsteudtirst, one starts by
looking at the energy eigenvalues of the individual atothat constitute the
semiconductor crystal. All semiconductors have tetrahethaids that have 3p
hybridization. However, the individual atoms have tbheeanost (valence) electrons in s-
and p-type orbitals. The symmetry (or geometric) propeudiethese orbitals are made

most clear by looking at their angular parts



s=1

P, :?X:\/ﬁsine cog

Py :?y:\/ﬁsine sing @

pZ:E:\/écose
r

Let's denote these states by |S>, |X>, |Y> and (@w¢e one puts the atoms in a crystal,
the valence electrons hybridize into® spbitals that lead to tetrahedral bonding. The
crystal develops its own bandstructure with gapballowed bands. For semiconductors,
one is typically worried about the bandstructuréhef conduction and the valence bands
only. It turns out that the states near the bargkedehave very much like the |S> and

the three p-type states that they had when theg weividual atoms.
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Figure 1: The typical bandstructure of semicondrgctéor direct-gap semiconductors,
the conduction band state &=0 is s-like. The valence band states are linear
combinations of p-like orbitals. For indirect-gagnmsconductors on the other hand, even
the conduction band minima states have some anafypitike nature mixed into the s-

like state.



Electronic band structure calculation methods can be grompedwo general
categories [1]. The first category consistsabfinitio methods, such as Hartree-Fock or
Density Functional Theory (DFT), which calculate thlectronic structure from first
principles, i.e. without the need for empirical figiparameters. In general, these
methods utilize a variational approach to calculategiimeind state energy of a many-
body system, where the system is defined at the attawvat. The original calculations
were performed on systems containing a few atoms. Toddgylations are performed
using approximately 1000 atoms but are computationally expemssingetimes requiring
massively parallel computers.

In contrast toab initio approaches, the second category consistsngdirical
methods, such as the Orthogonalized Plane Wave (ORWY}ight-binding [3] (also
known as the Linear Combination of Atomic Orbitals (LOA®ethod), thek [p method
[4], and the local [5], or the non-local [6] empaicpseudopotential method (EPM).
These methods involve empirical parameters to fit exp@etal data such as the band-to-
band transitions at specific high-symmetry points deriveminf optical absorption
experiments. The appeal of these methods is that ldotramic structure can be
calculated by solving a one-electron Schinger wave equation (SWE). Thus, empirical
methods are computationally less expensive #arinitio calculations and provide a
relatively easy means of generating the electronic [sngture. Due to their wide
spread usage, in the rest of this section we will redgeme of the most commonly used
ones, namely the empirical pseudopotential method, thH#-kigding and thek-p
method. The empirical pseudopotential method is describeslection 1.1, the tight-

binding is discussed in Section 1.2 and kKip method is described in Section 1.3.



Applications of thek-p method are given in Section 1.4, which is followed bytswhs
of the effective mass Schrodinger equation for metal-es@eiconductor devices and
for heterostructures. We finish this chapter by a bristdption of the carrier dynamics
that is given in Section 1.5.

Spin-Orbit Coupling

Before proceeding with the description of the various eogiband structure
methods, it is useful to introduce the spin-orbit intBoa Hamiltonian. The effects of
spin-orbit coupling are most easily considered by regardiegsfin-orbit interaction
energyHso as a perturbation. In its most general foHy, operating on the wavefunctions
Y, is then given by
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whereV is the potential energy term of the Hamiltonian, and the Pauli spin tensor. It

can also be written in the following form as an opmran the cell-periodic function

h
H =
S0 am?c?

[DVXp]EdI+%[DV><k]EU . (4)
4m=c

The first term isk-independent and is analogous to the atomic spin-orbitisglterm.

The second term is proportionalkcand is the additional spin-orbit energy coming from

the crystal momentum. Rough estimates indicate Heaetfect of the second term on the

energy bands is less than 1 percent of the effetiteofirst term. The relatively greater

importance of the first term comes from the fact ti@ velocity of the electron in its

atomic orbit is very much greater than the velocity aofwavepacket made up of

wavevectors in the neighborhoodkof



The spin-orbit splitting occurs in semiconductors invakence band, because the
valence electrons are very close to the nucleuslipestlectrons around the proton in the
hydrogen atom. Furthermore, we can make some prediciong the magnitude of the
splitting — in general, the splitting should be more doystals whose constituent atoms
have higher atomic number — since the nuclei have mat®ns, hence more field! In
fact, the spin-orbit splitting enerdy of semiconductors increases as the fourth power of
the atomic number of the constituent elements. Théeause the atomic number is
equal to the number of protons, which determines therieldetld seen by the valence
electrons. In Figure 2, the spin-orbit splitting energys plotted against an average

atomic number and a rough fit using power law is used.
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Figure 2. The spin-orbit splitting enerdyfor different semiconductors plotted against

the average atomic numbey,Z



Rashba and Dresselhaus Spin Splitting

The manipulation of the spin of charge carriers in senductors is one of the
key problems in the field of spintronics [7]. In the pagacktic spin transistor proposed
by Datta and Das [8], the electron spins, injected fadisrromagnetic contact into a two-
dimensional electron system are controllably rotabedng their passage from source to
drain by means of the Rashba spin-orbit coupling [9]. Th#iceat a , which describes
the strength of the Rashba spin-orbit coupling, and henceetipee of rotation, can be
tuned by gate voltages. This coupling stems from the inveragymmetry of the
confining potential of two-dimensional electron (or hodgstems. In addition to the
Rashba coupling, caused by structure inversion asymmetry, (85&4)a Dresselhaus type
of coupling contributes to the spin-orbit interaction [10he later is due to bulk
inversion asymmetry (BIA), and the interface inversioynasetry (11A). The BIA and
the 1IA contributions are phenomenologically inseparabid described below by the
generalized Dresselhaus parameferBoth Rashba and Dresselhaus couplings result in
spin splitting of the band and give rise to a varidtygmin-dependent phenomena that
allow one to evaluate the magnitude of the total splittieg of electron subbands.

However, usually it is not possible to extract thethedacontributions of Rashba
and Dresselhaus terms to the spin-orbit coupling. Tarotita Rashba coefficient , the
Dresselhaus contribution is normally neglected. At saene time, Dresselhaus and
Rashba terms can interfere in such a way that mampaseffects vanish though the
individual terms are large. For example, both termsaaartel each other, resulting in a
vanishing spin splitting in certain k-space directions.sTbancellation leads to the

disappearance of an antilocalization, the absence pof selaxation in specific



crystallographic directions, and the lack of SdH beatindref. [11], the importance of
both Rashba and Dresselhaus terms was pointed out: turngugh thata = 8 holds,
allows one to build a non-ballistic spin-effect triatwr.

The consequences of the Rashba and Dresselhaus ternesedectron dispersion
and on the spin orientation of the electronic statéseotwo-dimensional electron gas are
summarized below. We consider QWs of the zinc-blendectstre grown in the [001]
direction. Then, the spin-orbit part of the total Hiomian contains the Rashba as well as

the Dresselhaus term according to

a(oky -0 k) +B(o ko k) (5)
wherek is the electron wave-vector, aadis the vector of the Pauli matrices. Here, the
x-axis is aligned along the [100] direction, y-axis ig/adid along the [010] direction and
z-axis is the growth direction. Note that this Hamiltonicontribution contains only

terms linear ink. As confirmed experimentally [12], terms cubicknchange only the

strength of3 leaving the Hamiltonian unchanged.
1. The Empirical Pseudopotential Method

The concept of pseudopotentials was introduced by Fermigiity high-lying
atomic states. Afterwards, Hellman proposed that pseueloeis be used for
calculating the energy levels of the alkali metals J[1%he wide spread usage of
pseudopotentials did not occur until the late 1950s, when tgctivi the area of
condensed matter physics began to accelerate. The maiantage of using
pseudopotentials is that only valence electrons have tortsdered. The core electrons
are treated as if they are frozen in an atomic-likefiguration. As a result, the valence

electrons are thought to move in a weak one-electranpat



The pseudopotential method is based on the orthogonaliaed wave (OPW)
method due to Herring [2]. In this method, the crystalefantion ¢/, is constructed to
be orthogonal to the core states. This is accompliblyeexpandingy, as a smooth part
of symmetrized combinations of Bloch functiog , augmented with a linear

combination of core states. This is expressed as

Y = P +Zbk,t¢)k,t , (6)

whereb, , are orthogonalization coefficients ady,, are core wave functions. For Si-

14, the summation overin Eq. (6) is a sum over the core states2& 2p°. Since the
crystal wave function is constructed to be orthogonaht core wave functions, the

orthogonalization coefficients can be calculatedstyielding the final expression

Y =i _Z<¢)k,t|¢k>¢)k,t . (7)

t

To obtain a wave equation fa@r, , the Hamiltonian operator
2
H = p_ +VC , (8)
2m

is applied to Eq. (7), wheré. is the attractive core potential, and the following &av

equation results
p2
(—+Vc +VRJ¢k = Egx., ©)
2m

whereVg represents a short-range, non-Hermitian repulsion pateot the form

Vg = Z (E -E )<ch¢ |¢k>¢k,t .

10
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E. in Eq. (10) represents the atomic energy eigenvalue, ladsummation ovet

represents a summation over the core states. $a# geven in Eq. (9) can be thought of



as wave equation for the pseudo-wave functigp, but the energy eigenvalug
corresponds to the true energy of the crystal wave iamgt, . Furthermore, as a result
of the orthogonalization procedure, the repulsive potevtjalvhich serves to cancel the
attractive potentiaV, is introduced into the pseudo-wave function HamiltoniBime
result is a smoothly varying pseudopotential= V. + Vi This result is known as the
Phillips-Kleinman cancellation theorem [15] which providgstification why the
electronic structure of strongly-bound valence electaamsbe described using a nearly-
free electron model and weak potentials.

To simplify the problem further, model pseudopotenials ard irs@lace of the
actual pseudopotential. Figure 3 summarizes the various nexdplsyed. Note that the
3D Fourier transforms (for bulk systems) of each ofdbeve-described model potentials

are of the following general form

V() ~2E codar.) . (11)

&o(

This g-dependent pseudopotential is then used to calculate tingyeband structure
along different crystallographic directions, using thecpdure outlined in the following

section.
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Figure 3. Various model potentials.
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1.1  Description of the Empirical Pseudopotential Method

Recall from the previous section that the Phillips-Kiesm cancellation theorem

provides a means for the energy band problem to be siedpiiito a one-electron-like

problem. For this purpose, Eq. (9) can be re-written as

10



(p—z +va # =Epy | (12)
2m

where V; is the smoothly varying crystal pseudopotential. In gené&falis a linear
combination of atomic potential¥,, which can be expressed as summation over lattice

translation vectorR and atomic basis vectargo arrive at the following expression
Vo)=Y > Vir-R-1) . (13)
R =

To simplify further, the inner summation overcan be expressed as the total potential,

V,, in the unit cell located &. Eq. (13) then becomes
Ve(r)=>Vo(r -R) . (14
R

Because the crystal potential is periodic, the pseuddj@itenalso a periodic function

and can be expanded into a Fourier series over theoeal lattice to obtain
Ve(r)=> Vo (G)e®" , (15)
G
where the expansion coefficient is given by
1 3 —iGI
VO(G):EJd r Vo(r)e™® , (16)

andQ is the volume of the unit cell.

To apply this formalism to the zincblende lattice, it isvanient to choose a two-
atom basis centered at the origith£ 0). If the atomic basis vectors are givertby T =
-T2, Wherert, the atomic basis vector, is defined in terms ofléltéice constang, ast =

a,(1/8,1/8,1/8) V(r) can be expressed as

11



V,(r)=V,(r=1)+V,(r+1) , (17)
whereV; andV; are the atomic potentials of the cation and anion. tButasg Eq. (17)
into Eqg. (16), and using the displacement property of Eodransformsy,(r) can be
recast as

V,(G) = €°™V, (G) + &7V, (G) . (18)
Writing the Fourier coefficients of the atomic potelstian terms of symmetric
(V«(G)=V1+V>)) and antisymmetric(,(G)=V1-V>)) form factors Vy(G) is given by

Vo (G) = coq G)Vs(G)+isin( GF)VAG) , (19)
where the prefactors are referred to as the symnatdantisymmetric structure factors.
The form factors above are treated as adjustable pamsmttat can be fit to
experimental data, hence the name empirical pseudo@btemethod. For diamond-
lattice materials, with two identical atoms per unitl,d#le V,=0 and the structure factor
is simply codG [*). For zinc-blende lattice, like the one in GaAs malesystemV#0
and the structure factor is more complicated.

Now with the potential energy term specified, the ntadk is to recast the
Schrddinger equation in a matrix form. Recall thatdbleition to the Schréodinger wave
equation in a periodic lattice is a Bloch function, vhis composed of a plane wave

component and a cell periodic part that has the perigditthe lattice, i.e.
i (r)=e""u (r) =" LU ()" . (20)
&

By expanding the cell periodic past(r) of the Bloch function appearing in Eq. (20) into

Fourier components, and substituting the pseudceviianctiong, and potential, into

the Schrddinger wave equation, the following maggxation results

12



G 2m

Z{M—E:IU(GH%VOQG—G'|)U(G’)}:O. (21)

The expression given in Eq. (21) is zero when each tertinei sum is identically zero,

which implies the following condition

—E:IU (G)+§VOQG—G’|)U(G')=O . (22)

In this way, the band structure calculation is reducealing the eigenvalue problem
specified by Eqg. (22) for the ener@y As obvious from Eq. (20)) (G) is the Fourier
component of the cell periodic part of the Bloch time. The number of reciprocal
lattice vectors used determines both the matrix sidecalculation accuracy.

The eigenvalue problem of Eq. (22) can be written in tleenfamiliar form
HU = EU, whereH is a matrix,U is a column vector representing the eigenvectors, and
E is the energy eigenvalue corresponding to its resgeeigenvector. For the diamond

lattice, the diagonal matrix elementstbfare then given by
Hy =k +G[ (23
for i =], and the off-diagonal matrix elementstbfare given by

Hi; =Vs(Gi -G |Jeofici -6 )z, (24)
for i #]. Note that the terrii(0) is neglected in arriving at Eq. (23), becauseili only

give a rigid shift in energy to the bands. The Sofuto the energy eigenvalues and

corresponding eigenvectors can then be found lgodilizing matrixH.

13



1.2  Implementation of the Empirical Pseudopotential Mehod for Si and Ge

For a typical semiconductor system, 137 plane waves affecienl, each
corresponding to vectors in the reciprocal lattice, tpaer the pseudopotential. The
reciprocal lattice of a face-centered cubic (FCC),di@mond or zinc-blende structure, is
a body-centered cubic (BCC) structure. Reciprocat&attectors up to and including the
10"-nearest neighbor from the origin are usually consitierkich results in 137 plane
waves for the zinc-blende structure. The square oflidgtance from the origin to each
equivalent set of reciprocal lattice sites is angatein the setG? = 0, 3, 4, 8, 11, 12, ...
where % is expressed in units of )% Note that the argument of the
pseudopotential terivs in Eq. (24) is the difference between reciprocaldattiectors. It
can be shown that the square of the difference betvesprocal lattice vectors will also
form the set of integers previously described. This mehasVs is only needed at
discrete points corresponding to nearest-neighbor. sitke pseudopotential, on the other
hand, is a continuous quantity. Therefore, its FourgrsformV(q) is also a continuous
function that is shown in Figure 4. The points corresiigy to the first three nearest

neighbors are also indicated on this figure.

14
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Figure 4. Fourier transform of the pseudopotential. (Na&edk |G -G )

Recall that the pseudopotential is only needed at a fegvedé points along the
V(q) curve. The discrete points correspond to dhealues that match the integer set
described previously. There is some controversy, howesgarding the value &f asq
vanishes. There are two common values seen in thatlite:V,(0)= -3/Z: andV,(0) =
0. In most cases, the teig0) is ignored because it only gives a rigid shift in epdog
the bands. The remaining form factors needed to compatband structure for non-
polar materials correspond 63 = 3, 8, and 11. Fogf = 4, the cosine term in Eq. (24)
will always vanish. Furthermore, for values qf greater than 11V(q) quickly
approaches zero. This comes from the fact that thedppetential is a smoothly varying
function, and only few plane waves are needed to représdhta function is rapidly
varying in space, then many more plane waves would beregqinother advantage of
the empirical pseudopotential method is that only threanpeters are needed to describe

the band structure of non-polar materials.
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Table 1: Local Pseudopotential Form Factors.

Form Factor

Si Ge
(Ry)
V3 -0.2241 -0.2768
Vs 0.0551 0.0582
Vi1 0.0724 0.0152

Using the form factors listed in Table 1, where thdo®n factors are taken from [16]
and the Ge form factors are taken from [17], the bandtetescfor Si and Ge are plotted
in Figure 5 [18]. Note that spin-orbit interaction is nauded in these simulations. The
lattice constants specified for Si and Ge are 5.43A and 5.65hectively. Si is an
indirect band gap semiconductor. Its primary gap, i.eimmim gap, is calculated from
the valence band maximum at thgoint to the conduction band minimum along the
direction, 85% of the distance frofto X. The band gap of Si, is calculated toEg& =
1.08 eV, in agreement with experimental findings. Gelgs an indirect band gap
semiconductor. Its band gap is defined from the top of #ienge band af to the
conduction band minimum at L. The band gap of Ge is katmlito beE,°®= 0.73 eV.
The direct gap, which is defined from the valence band maxi atl" to the conduction
band minimum af’, is calculated to be 3.27 eV and 0.82 eV for Si and Geentively.
Note that the curvature of the top valence band of Qarger than that of Si. This
corresponds to the fact that the effective hole més is larger than that of Ge. Note
that the inclusion of the spin-orbit interaction Wit the triple degeneracy of the bands

at thel” point, leaving doubly-degenerate heavy and light-hole bartis aplit-off band

16



moved downward in energy by few 10's of meV (depending upon #terial under

consideration).
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Figure 5. Left panel: band structures of silicon. Right eparband structure of

germanium.

In summary, the local empirical pseudopotential methadrdeed in this section
is rather good for an accurate description of the dpgeps. However, as noted by
Chelikowsky and Cohen [19], when these local calcuiatiare extended to yield the
valence-band electronic density of states, the reebli@ined are far from satisfactory.
The reason for this discrepancy arises from the oomssif the low cores in the
derivation of the pseudopotential in the previous sectidimis, as previously noted,
allowed the usage of a simple plane wave basis. Treatoior the errors introduced, an
energy-dependent non-local correction term is addeietdocal atomic potential. This
increases the number of parameters needed but leadstdo dmivergence and more

exact band-structure results [20,21].
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1.3  Empirical Pseudopotential Method for GaN

In the previous section, the implementation of thepienal pseudopotential
method for diamond and zinc-blende material systems waksies@ in details and
representative bandstructure simulation results forStheand Ge material system were
presented. In this section we want to point out (withgiving much details) that the
empirical pseudopotential method can be successfully wsedekcribing the optical
gaps in a variety of state-of-the-art materials, sasl@&aN, AIN and InN, that exhibit a
wurtzite structure. The great interest in the group-lllidetrmaterial system can be
attributed to the promissing electrical and optical progerof the binary compounds
AIN, GaN, InN and their alloys. These binary compoundsall crystallize in the
wurtzite structured-nitrides). In has been demonstrated that, by using reddstructure
parameters, representative of a wurtzite materiaésysand discussed in more details in
Ref. [22], one can obtain with the Empirical Pseudop@kfethod the complete band
dispersion of valence and conduction bands and relg@bljde necessary band-structure
parameters such as the optical gaps and the effecagses Necessary ingredients in
these calculations are the use of the continuous ionmdel potentials, which are
screened by the model dielectric function derived foric@miuctors by Levine and
Louie [23]. Such approach allows for a continuous descriptidhe reciprocal space, the
explicit inclusion of bond charges, and the exploitatainthe ionic model potential
transferability to other crystal structures, nameig, wurtzite crystal. In Ref. [24], it was
shown by way of an example of wurtzite phase nitridas thystal-specific anisotropies

can be taken into account via proper choice of the sitrgdéunction. A band-structure of

18



a GaN material system obtained by using the approaci giv&ef. [24] is shown in

Figure 6.
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Figure 6. GaN bandstructure as calculated by Yamakaah[22].

2. The Tight-Binding Method

Tight binding (TB) is a semi-empirical method for efecic structure
calculations. While it retains the underlying quantum meiisaof the electrons, the
Hamiltonian is parametrized and simplified before thdcudation, rather than
constructing it from first principles. The methoddstailed by Slater and Koster [25],
who laid the initial ground work. Conceptually, tight bindimgrks by postulating a basis
set which consists of atomic-like orbitals (i.e. thslgare the angular momentum
components of the atomic orbitals, and are easily st radial and angular parts) for
each atom in the system, and the Hamiltonian is gfa@ametrized in terms of various
high symmetry interactions between these orbitals. tEvahedral semiconductors, as

already noted, a conceptual basis set cflike orbital and 3p-like orbitals has been

19



used. In the most common form of tight binding (nearegjhbor, orthogonal TB), the
orbitals are assumed to be orthogonal and interadbetwgeen different orbitals are only
allowed to be non-zero within a certain distance, wigghlaced somewhere between the
first and second nearest neighbors in the crystal steictA further simplification which
is made, is to neglect three-center integrals &reinteraction between orbitals on atoms
A and B which is mediated by the potential on atom Cammg that each interaction is a
function of the distance between the atoms only.

The quantitative description of the method presented beladue to Chadi and
Cohen [3]. Let us denote the position of the atorhénprimitive cell as

ry =Rj+rp, (25)
where Ris the position of th¢th primitive cell and ris the position of the atom within

the primitive cell. Leth(r) be the Hamiltonian of the isolated atom, such that

N@mlr =1y )= Em@mlr -ry) . (26)
whereE,, and @, are the eigenvalues and the eigenfunctions of the istgeed bym.
The atomic orbitalsp, are called Lowdin orbitals [26], and they are differeoinf the
usual atomic wavefunctions in that they have been consttuict such a way that

wavefunctions centered at different atomic sites atteogonal to each other. The total

Hamiltonian of the system is then

HO:jZih|(r_rj|). (27)

Note that the sum ovérefers to a sum within the different atoms in theifaherefore,
| =1, 2 for diamond and zinc-blende crystals. The unpertuBbech functions, that

have the proper translational symmetry, are construotbd bf the following form

20



1 ir, B
)] =—>Ye!
ml N j

Pl (r —rj ) - (28)

The eigenvalues of the total Hamiltoniein= H, + H,, (whereH,, is the interaction part

of the Hamiltonian) are then represented as arlio@abination of the Bloch functions

Wy = %lcmlq)mlk ) (29)

Operating with the total Hamiltonian of the systeinon W, , and using the orthogonality

of the atomic wavefunctions, one arrives at thio#hg matrix equation

leH mlml ExOmmOn | Cmi =0, (30)
m

where the matrix element appearing in the aboveessgmn is given by

i(Rj+r —r|-)[k<

Hm'l',m|(k)=Zjle %ﬂk(f—fjl )|H|¢mlk(r_rjl')> : (31)

Note that in the simplest implementation of thistimeel, instead of summing over all the

atoms, one sums over the nearest-neighbor atonys Aido note that the indem

represents the- andp-states of the outermost electrons) (| X),|Y) and|Z}), andl is

the number of distinct electrons in the basis. ther case of tetrahedrally coordinated

semiconductors, the number of nearest-neighbeatsaad are located at

dy = (LDag /4

d, =(1-1,-Day/4
d;=(-11-Dag/4
dy =(-1-1D)a, /4

(32)

For a diamond lattice, one also defines the folf@gymatrix elements

21



VSS = 4\/883'
Vep = ~Ngp /43

- : (33)
Vi = 4kppo 13+ N e /3]
Vyy =4V ppo 13~V /3]
As an example, consider the matrix element betwsersistates
Hsl,Sz = I.eikl +eik2 +eik3 +eik4ksl|Hint|52> = gl(k)vssr : (34)

Notice the appearance of the Bloch sgutk) in Eq. (34). This observation suggests that

for different basis states, there will be four diffar&och sumsg; throughgs, of the

form
gy (k) = |[€K@ + kB2 4 gklds 4 glky
9,(K) = olkBr 4 oikdy _ ks _ Jkid,
Ky _ g KDy _ _jkidy) (35)
gg(k) = elkl _e|k2 +e|k3 _e|k4
94 (k) = olkB _ oik@y _ ks | ik,

It is also important to note that the Hamiltoniaatnx elements betweens and ap-

state on the same atom, or two differprdtates on the same atom, are zero because of
symmetry in diamond and zincblende crystals. Tk $cular determinant representing
all possible nearest-neighbor interactions betwden tight-bindings- and p-orbitals

centered on each atom in the crystal is
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(36)

The tight-binding parameters appearing in Egs. (33) and (3@btaeed by comparison

with empirical pseudopotential calculations, which areenesl in Ref. [3].

Table 2. Chadi and Cohen tight-binding parameters [3].

Ep-Es | Vss Vsp Vix | Vyy
C 7.40 -15.2| 10.25 3.0 8.3
Si 7.20 -8.13] 5.88) 171 7.51
Ge 8.41 -6.78) 5.31] 1.6 6.82

Using the above-described method one can quite accudastyibe the valence

bands, whereas the conduction bands are not reprodut¢edethdue to the omission of

the interaction with the higher-lying bands. The accyi the conduction bands can be

improved with the addition of more overlap parametelewever, there are only four

conduction bands and the addition of more orbitals destheysimplicity of the method.
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3. The k-p method

In contrast to the previously described empirical pseudopaiemind the tight-
binding methods, th&-p method is based upon perturbation theory [27,28]. In this
method, the energy is calculated near a band maximumremum by considering the
wavenumber (measured from the extremum) as a pertmbati
3.1 kep General Description

To get a better understanding of the method, let us asthanéhe Schrédinger
equation studied is mono-dimensional and stationaryfuiitber elaborate the problem,

also assume that the particle is surrounded by a pot¥ntidl +\, whereV_ is the
periodic potential that has the periodicity of the d&ttiandVj, is the confinement

potential. For this particle, the mono-dimensional Scingit wave equation is

2

How(x){p—W(x)}w(x):w(» , (37)

2m
andV;= 0 if xO[-X), %] andV, =-\, otherwise. HereY, andx, are some arbitrary

positive constants. IV, is small, then the solutions to the mono-dimeraion

Schrédinger equation are of the Bloch form (asutised in the introduction part of this

section) and are repeated here for completenessifbrcase. Namely,

() =y (¥, (38)
whereuy (X) is cell periodic part of the Bloch function. Theh8ddinger equation can

then be written as
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2 2,2
HkUk(X):|:2p +V(X)+%]k@):l Lk(>9:|: Ek‘ﬂ:l Y( X (39)

_m 2m

The term(h/m)kﬂ) is treated as a perturbation i for determiningu, (X) and Ex in

the vicinity ofk = 0 in terms of the complete set of cell-periodiavefunctions and
energy eigenvalues &t= 0, which are assumed known. To simplify the farihiEq. (39),

it is convenient to define

(40)

To deal with this problem, we now assume that weelan orthonormal bas{g} [, of

eigenvectors (associated to their eigenvalyjgsof the operatorp2/2m+ \/ that are of
a fixed parity (the orbitals may be sfor p-type). We then project operatét, on the

finite dimensional space generated by ¢his, to get

(Gl 23) =i + k(& 1914 )+ (¢ w4 )

(41)
=A% +kR +Q
i.e. we arrive at the symmetric eigenvalue matrix
o ()
H(k)=Q+| : : , (42)
(@) - 4

the solutions of which provide us the eigenvaluabthe corresponding eigenvectors.
3.2 kep Theory Near thel" Point and for Bulk Materials
In general practical situation, one either has &-bke system or lower-

dimensional systems such as 2D and 1D electrors gasehich there is a confinement in
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one and two directions, respectively. We want to pointtloat these lower dimensional
systems are frequently encountered in state-of-thdeatites which makes this general
discussion of thekep method very useful. For a general system, with spuit-0

interaction included in the model, and using the resulttier 1D case given in the

previous section, the Schrédinger equation is of thevialig general form:

2 2,2
P~ _n (UxDV)m)+h K +K[Ep+

h _
2y 4 2my  m 8(UXDV)H 0= Bt (0 (49

4y
The Hamiltonian in Eq. (43) can be divided into two terms

[H(k =0)+Wk)] ux = B U (44)
where the onlk-dependence is preservedWik). Next, as in the 1D case, we assume
that the local single particle of Hamiltonigiik = 0) has a complete set of eigenfunctions
Ung, 1-€.

H(k =0)uo = E ol - (45)
An arbitrary (“well behaving”) lattice periodic functionan be written as a series

expansion using the eigenfunctiong,. We then insert an expansion
Un =2 Cm(K) Ung (46)
m

in EqQ. (45) and find matrix equation for determgnithe unknown coefficients} (k).

We multiply from left byu:]O, integrate and use the orthogonality of the bfsistions,

to get
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ZHEnO—Enk +h2k2J5nm+ﬁEQum|{p+ L (UXDV)J| umﬁ ¢k)=0. (47
m 2my m 4my &
Solving the above matrix equation then gives the exmgnstates of the Eq. (43).
However, this looks good only in principle, the reaseimd that the calculation becomes
increasingly complicated dsincreases. One has to increase the number of staties
expansion given in Eqg. (47) and the calculations beconmencally unfeasible.

Therefore this approach is practical only for small waetor values.

Whenk is small, the non-diagonal terms are small and diaedt order solution
for eigenstatay,, = u., is ¢, (k) = d,y and the corresponding eigenvalue is given by

72k 2
2m,

E=Ep+ (48)

If the nondiagonal terms are small, one can imptheeabove result by using the second

order perturbation theory

2K? Uo|H Ul Hi| U
En = Eno + (o Uo) + {Uno| ||Um0>_< mol Hil Ung) ’ (49)
M#n EnO EmO
where
H, Tk p+ L (ox0OV) | . (50)
My 4rrbc2
Since the kinetic energy operator is a scalar,s#eond order eigen-energies can be
written as
n2k2 0% _ ||
Ew =Bt t— T, (51)
2my  mg men Bho~ Bno
where

27



T=p+ (oxOV) . (52)

4moc2
Tlhm = <ur0|77|urr0>

The vectork can be taken outside the integral in Eqg. (51). It is $kat the eigenvalue

depends in the vicinity of thie point quadratically on the wave vector components. Then,

Eq. (51) is often written as

52
En = n0+_zl§cr_|§6 a,B:X Yy z (53)
a,B /Ja,B
where
D T (54)
UiP my mzn Eno — Emo

is an effective mass tensor.
3.3 Kane’s Theory

kep theory, as discussed in Section ?? is essenbiaigd on perturbation theory.
A more exact approach, capable of including strdwagd to band interactions, is
provided by Eq. (47). Note that the inclusion afcamplete set of basis states in Eq. (47)
is not feasible numerically. However, one can improhekep theory drastically if it
includes in Eq. (47) those bands that are strooglypled and correct this approximation
by treating the influence of distant (energeticalhgnds perturbatively. This procedure
can be made consistently if the electron bandgeastivided into two groups. In the first
group of bands there is a strong interband couplittte number of bands in this group is
very limited (up to 8, say). The second group ofdsais only weakly interacting with the

first set. This interaction is treated by pertudmatheory. This approach is called Kane’s
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[27,28] model and it has shown to be very predictive for K¢/ compound
semiconductors.

Within Kane’s theory one constructs a new basis ofmrsgtric atomic Bloch

states as a linear combination of the “directed orbi&timic Bloch state$un0>

discussed in the previous chapter. The new basis setamflist of eigenfunctions of

operators] and its component in the z-directidn The new basis set is then denoted by
‘jmj>, where j = %, 3/2 anty = |, |-1, ..., -|. This gives six subbands. These can be

considered together with the s-symmetric conduction béhd.resulting 8-band model
gives a good description of the electronic structurelle¥ Isemiconductors near the
point. The new basis set is given in terms of theati@d orbitals shown in Table 3. In the

literature, there are another sets of basis functibat differ from the set of functions
given here by a unitary transformatibjmj > = U‘ jm; > uu'=1.
Table 3. The atomic basis stateslatpoint. The eigenvalues in the fourth column

correspond to Eq. (). The zero point of energy has lsstnto the bottom of the

conduction band.

U ‘jm]> Y3,m E (k=0)
Uy }}> |‘ST> 0 e
2'2
31 -E r
sy ety ©
33 -E r
B3 Hxem oo
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11 1, . 1 ‘Eo-A T
"R wemaege T
Uy 1__1> i[S1) 0 T

2" 2
u (3 1 2 1 _ -Eo r
133 -\E\ZO-%\X-'YM 8
u |3 3 1, . -Eo s
6 E’_§> E\x iY) 1)

u |1 1\ _ 1, _. 1 -Eo-A Ty
8 E’_§> \/§‘X |Y)T>+\/:_3‘Zl>

The atomic Bloch states in Table 3 are eigenstd#tdse HamiltoniarH(k=0) and include
spin-orbit interactionl"s corresponds to the conduction bahg,denotes the heavy-hole
(my = £3/2) andl's (m = £1/2) the light-hole band:7 is known as split-off band. If we

neglect in Eqg. () the spin-orbit term that depemadshe wavevector, i.e. the term

e -p)=—M0—(oxOV) |, 55
e 7P) %%4%;(0 )} (55)

then the matrix presentation of the Hamiltonian

21,2
hk+hk®

(56)
2mp My

H(k)=H(K =0)+

is given in Table 4 using the basis set of Tabld@&e that this Hamiltonian does not yet
include the influence of distant bands which makeseffective mass of the valence band

to differ from the electron rest mass. Some notatissed in Table 4 are given below
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Eo=Er, — B, -
A:Ers_ E|—7
SCLEE TR Y.

We now calculate the dispersion as a functiok @dr the 8-bandkep theory by
diagonalizing the Hamiltonian in Table 4. For bulk systeonsheterostructures in which
we have confinement only in one direction, the Hamifia in Table 4 is easy to
diagonalize if the z-axis of the coordinate system lenain the direction of the

wavevector. In this caslke, = k and accordingljk, =0. This choice is possible since it

can be shown that the Hamiltonian is isotropic andretbee, the eigenvalues and
eigenvectors depend on the magnitude kebnly. In this coordinate system the

Hamiltonian is brought into a block form
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Table 4. Eight band Hamiltoniat(k).

is ) 33 33
21,2
list) hz:b - %Phkz Pk
3.3) -\EPhkz ‘Eo*'h;:: 0
2.3) Pk 0 —Eo+"’22n§
X)) \/gPhkz 0 0
‘ISl> 0 %Phh 0
3,-1) - |ip, 0 0
‘2 2> 3 k+
9 0 o o
1) G 0 o

H 0
H = 4x4 ,
O H4x4

where the 44 matrix is given by

21,2
LS thkz
2my 3
21,2
—\/gPth —E0+h K
3 2m,
Hyxg =
0 0
\/%Phkz 0

32

0

Pz_% ‘*12_*12
0 2 p Kk
3
0 0
0 0
0 0
1
Pk \EFth
0 0
nk?
Q+2% 0
21,2
0 —E0+A+h2r:fb
(58)
(59)




and where for bulk case one can assie k. The eigenvalues (doubly degenerate) are
obtained by finding the roots of the determinant equation

|H-E(K)I|=0. (60)

. n’k? . .
Denoting A(k) = E(k)_ﬁ’ the eigenvalues, i.e. the roots of Eq. () are

Mk) = -E

)l(k)[)l(k)’LEo][)l(kHE0+A]:h2k2P2[)l(k)+ EO+2_3A] (61)

This last equation corresponds to the original fdation of Kane [27,28]. In his
derivation he uses a different basis set corregpgntb eigenfunctions of operators
L?,L,,S% S, but the eigenvalues and dispersion relationsegrml since the basis sets
are related by a unitary transformation. From tirst €quation, one obtains the dispersion
for theHH-band:

LSS S 3 62)
2my," my, g

Epn =—Eo -
Note that the effective hole mass is still equahi bare electron mass. From the second
eguation we obtain the other three dispersioniogiatas follows. We assume that the

coefficient 4%k ?P? is small. We then obtain the lowest order solutigrsetting this term

equal to zero and obtain (of course) the origiraidoedge positions
APy =0, Aoy =-Eg, A, =-Ep-A. (63)

The zero of the energy scale is taken to be atdmeluction band edge. Now, the first
order solution is obtained by each band by insgttie zero order solution on the RHS of

Eq. () and also in the left hand side in all ottegms except for one becoming zero if the
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substitution is made. The first order eigenvalue is thbtaimed analytically. For

example, for the conduction band one obtains
20
O[04 B 4,00 + o] =1 32PT A2k + B |

At (K)[Eo][Eo +A] =h2k2P2[ Ew%} = (64)

K
R0 e T )

Eo+} 2,2 22 2 2
c k:hzkzpz[ 3| n%k :hk(i 4P 2P j -
O (E[6+d] 2m 2 | m 35 A &ra)) O

which means that the effective mass of the elestiarthe vicinity of the conduction

band edge is

1 1 4P? P2
+ +

m w3 A ra) >
For the light hole and the split-off bands, oneagt® by similar procedure
g =g K 11 4P
2m, M m 3h (67)
Eso —E—A—ﬁ 1.1 o

Note that because of the relative magnitudes of rtiarix elements of the dipole
operator, band edge energies and spin-orbit swjitonduction band obtains a positive
effective mass, whereas the light-hole and spfibbahds have negative effective electron
mass. Kane [27,28] used this method to describestieegy band-structure ingatype

germanium and silicon, and indium antimonide.
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3.4.  Coupling With Distant Bands

To describe the coupling with distant bands, we considgewtlve equation

(Ho+W)y = By, (68)
where
21,2
W =%k B +% . (69)

We assume that the eigenvalugscorresponding to eigenstatgs| =1,2,...,€ of the

Hamiltonian H, are close to each others on the energy scale. Tdresthe 8 bands
considered in Kane’s model. These eigenstates are tromgpled by the operatoi.
We assume that there is another set of eigen#la)teﬁ H, only weakly coupled byV.
We now calculate the correction to the 8 lowest eigegabfH, caused by the distant

bands. Lety be solution to Eqg. () including this correction, i.e.
w=xa[h)+Ie|v). (70)
14
Inserting Eq. (70) into Eqg. (69), we obtain

26 [( - ) +(MW )]+ o ) =0

26, [(E = B), +{ulWy)] + el W) =0 1)

Since the coupling to the distant baduzﬁ; is weak, one can conclude thatfifis one of

the lowest 8 eigenvalues, the relative magnitudieshe expansion coefficients are:

g| 01 and|c,| <<1. The second of the above equations then gives
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1
E_E/Izq<u|vv| ). (72)

Inserting this into the first of Egs. (71), we dhta

c, U

o (8~ B)an +(miw )+ v 2L w0 9

It is obvious that the influence of the distant d&rcan be taken into account by

replacement

W o W= W+ V\E%V\. (74)

It can be shown that the Hamiltonian of distantcbimeractionWV — W is given by Table

5, where the following notation has been used
F(k) = Ak? +E(k2—3|<3)
2

G(k)=Ak2—§(k2—3I§)

H (k) = -iDK, (kx— iky) , (75)
_\/é 2 2 :
(k) =-B(k; ~kj) — iDkyk,
A:L+2M, B:ﬂ, C? = D?- 3B, D:ﬁ
3 3 NE
where
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ot at [XIedv)f
2m, mgv E-E
2
M:h—2+h_2 M
2mO mgv E-@ |
o s XU R V) A mlv)v] ol Y
X E-E,
12 [XIe)f, 1
m v E-E  m

Table 5. Hamiltonian of the distant band interaction.

ist) 33 133 5
lis 1) hzkz[l—l] 0 0 0
2 \m
n?k? , 1
2.4) 0 o iH * —ﬁ(G—F)
h2k2 H
2.3) 0 —iH o, fH
H 2k2
T L I G e
list) 0 0 0 0 L
2
2.-4) 0 0 -l * i g *
2.-2) 0 | * 0 V2 +
4.-4) 0 -i /gH =2 0

3.5  The Luttinger-Kohn Hamiltonian

In the Luttinger-Kohn approximation [29] it is assumed tBg andA are large

list)

(76)
-3 33
0 0
0 |
- 0
.13
—|\/:2H J2i
0 0
2,2
G-k —H
2m,
2,2
iH * Ik
2m,
1 i
-—(G-F) —=H
N AN

enough, so that coupling of tligg bands with the split-off band is weak. This allows one

to derive 44 Hamiltonian submatrix. The derivation consists of upitaansformation

from the basis setxX),|Y),| Z) multiplied by the spin function)s 1> parts to thej —

37




coupled subspacg/2,3/2 | 3/2- 3/2 (HH-states) and3/2,1/2 | 3/2- 1/2 (LH-

states). The Hamiltonian is

33
=2 F- H ~1 0
23 s
31
H=|2,2) H* G- 0 I 77
‘2 2> Eo (77)
3 1
=-2) -1 0 G- H
27 “
|§,—§> 0 *  H*  F-E
2" 2

The eigenvalues of the above Hamiltonian are obtaimeth fdeterminant equation

|H - El| =0, which gives

2
=5+ Lm0y T8 4 g

(78)
B, () =-Fp+ Az [BK+ C( R+ FI+ §Y
If one assumes that||z-axis, it arrives at
Er,(K=-F+(At B K . (79)
Inserting matrix elements A and B tH&l-LH dispersion is given by
2,2 <3,ig| pz| Un0>
E:—Eo—h_; i:— 1+ 2 > 2 2 . (80)

e M m mee,  Be G
The last term is a correction coming from the cowgpivith the distant bands. This gives

theHH-band a negative electron effective mass (and giy@hole effective mass).
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The Hamiltonian given in Eq. (77) can be written in@enfamiliar form in terms
of Luttinger parameters. First, the Luttinger paramejgrg,, y; are written in terms of

L, M, N, R, S, and T. The matrix elements of Hid-LH Hamiltonian are then given by

F(k)= —%[(myz)(kxz IS+ (r1-212) K|

2

G(k) = —;—%[(yl—yz)(kf 1)+ (1 2v5) K|
(81)

H(k)_—ﬁ»yg (ke iky)

(k) = ——@[yz( k2) - 2iyskok, |

4. Applications of kep to Quasi-2D Electron and Hole System

4.1  Heterostructure Devices

Development of Molecular Beam Epitaxy [30] has beenhedsby device
technology to achieve structures with atomic layeresisions and this has led to an
entirely new area of condensed matter physics and investigat structures exhibiting
strong quantum size effects. MBE has played a key raleeirdiscovery of phenomena
like the two dimensional electron and hole gases [31],tqguahlall effect [32], and new
structures like quantum wires [33], quantum dots [34], etc.cbh&énued miniaturization
of solid state devices is leading to the point where qeetiin-induced phenomena
become more and more important. These phenomenahawa that the role of material
purity, native defects and interface quality are very aiitio the device performance.

Modulation doping is employed to achieve adequate carriesitéEnin one region of the
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device which is physically separated from the source ef darriers, the ionized
impurities.

The low temperature mobility of modulation doped GaAs/A&atructures is a
good measure of the GaAs/AlGaAs material quality. This w@peery strongly on the
epitaxial structure, particularly the placement and gtyaofidopant impurities. The two
dimensional electron gas (2DEG) that exists at therfate between GaAs and the wider
band gap AlGaAs exhibits a very high mobility at low tempees. Even at room
temperatures, the mobility is larger than that of buld& Two factors contribute to this
higher mobility, both arising from the selective dopingAt&aAs buffer layers rather
than the GaAs layers in which the carriers residee fitst is the natural separation
between the donor atoms in the AlGaAs and the elexirothe GaAs. The second is the
inclusion of an undoped AlGaAs spacer layer in the struct&uweh structures are quite
complicated but can be easily fabricated using MBE teclas. A typical heterostructure
begins with the bulk GaAs wafer upon which a GaAs bulfger or superlattice is
grown. The latter is used to act as a barrier to thaibfusion of impurities and defects
from the substrate. It also consists of a GaAs agerland alternating layers of AlGaAs
and GaAs. The common practice is to use a doping foAlkBaAs layers in the active
region but nowadays undoped AlGaAs layers are used and a digted layer is
included. This delta doped layer along with the growth of supieda restricts the
formation of defects, known as D—X centers, to a mimmThere are two important
AlGaAs layers on either side of thedoped layer and they are called buffer and spacer
layer, respectively. The spacer layer is closer toGhAs quantum well and is of high

purity to prevent scattering of the channel carriers layitmized impurities. A usual
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practice is to use undoped AlGaAs layers to have very gooithement of the charge
carriers in the well. Other device parameters thate hev be considered are the
composition of the Aluminum in AlGaAs. There is a gyomise in the value chosen for
x: if x is smaller than 0.2 then the band discontinuity eltoo small to properly confine
carriers in the well; ik is too large then defects, termed as D-X centers, teagdear in
AlGaAs. To overcome this problem Aluminum conteninsited to about 20% and other
variations liked—doping layer and growth of superlattices are introducedth@dVBE
techniques.

A prototypical GaAs/AlGaAs heterostructure used, for examfdr quantum
wires and dots formation that utilize the split-gatehhique, is shown in Figure 7. The
zero-temperature conduction band profile along the growdctbn is shown on the
right panel of Figure 7. One can see that the elecmomdocalized in the quantum-well
region, and the presence of this quantization can, mtipte, lead to the modification of

the electron and hole effective masses.
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Figure 7. Heterostructure used in the fabrication of phe flter realized with quantum

point contacts at Arizona State University [35,36].
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4.1 A Study of Spin-Resolved Band Structure in GaAs Quanta Wells

as Applied to Spintronics

Today, the research spintronics— the field of semiconductor electronics based
upon exploiting the quantum mechanical property of elecsmin as an information
carrying entity — owes its existence, in general, to pwonary factors. The first is
theoretical: the spin component of the electron’sevanction can retain its form (i.e.,
it's orientation or, if referring to an ensemble olearons, the coherence) in
semiconductor transport for much longer times than carsplatial components. In fact,

the spin relaxation time, can be on the order of nanoseconds, as opposed to

femtoseconds for the spatial momentum relaxation {i87€38]. The second factor is
technological: Improvements in lithography and the camtig progress in developing
efficient spin filter injection/detection mechanisnisatt polarize (or detect polarized)
electrons in the 2DEG gas of semiconductor heterostegtior spintronic devices by
various means, other than by applying a cumbersome exteawaietic field to lift the
spin degeneracy [39,40], have prompted the race to develag devices such as the
spin transistor (SPINFET). The starting point for ustlrding spin injection/detection,
the spin-flip scattering mechanisms and their relatiyeact on transport is, of course,
the determination of an accurate spin-resolved band steuctu

This section is organized as follows. We first presenapplication of the multi-
bandk[p to calculations of a band-structure in quantum wellthm absence of stress,
strain, or magnetic fields. The effect of bulk inwversasymmetry, a source of spin-
splitting in the bands, is then introduced in the mo#ekthermore, thekd model,

Ddiscussed in section ?? and developed within our group @eath to account for spin

42



splitting in the conduction band due to any structural inerrasymmetry (SIA) that
may exist. The model, incorporating SIA effects, isntikempared to a similar model,
recently published in the literature. Current work includegestigation of the energy
level structure in the spin filter that will be re&d at Arizona State University using the
heterostructure shown in Figure 7.

General Characteristics of the Solver

The Fermi energy of the electrons involved in thagpart through our QPC is on
the order of 10 meV. This energy is low enough such thztna structure calculation
accurate only around a point of high symmetry in the Rriozone (" point) is
sufficient. For this situation, thield method of calculating band structure, explained in
details in Section ??, is applicable.

Eppengaet al [41], using the Kane basis set and including -spbit coupling

and remote band effects via Lowdin perturbatiorothg42], arrive at the following

Hamiltonian
e, ~2r B Ve 0 P V2o
ELH G1 \/E G+ - P* * 0 _\/éG— Gz
E, -G —J2P, J3c o J2g
E _ _
H = " 0 G, —J26, o0 (82)
G N
ELH Gl \/7Z3—
Eso _G—
L EHH .

The “empty spaces” in Eq. (82) denote Hermitian jugates. The diagonal matrix

elements are
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E. = E,+se
ELH = _ylé+ y2~q (83)
Eo,= —A-ye

EHH = -yety,§

where E; is the bandgap and is the spin-orbit split-off energy. The, ), and s

parameters are effective mass parameters that yribeiffree-electron term. Also,

. K ~ . R h?

e=_—(K+K+K) g=2—(2K-K-K), ="—(K-K). (84)
The off-diagonal terms are given as,

P, = Jﬁ(ipﬁz+ﬁkxky)

P, = JY6[ip(k, +ik )+ Bk, (K, * ik,)]

G = V2p,8 - (85)
G, = Vare+i2kk

G. = ok (k £ ik)

2
In these termsgz—h— j dr qdjaiqoz and accounts for the coupling of the conduction
z

unit cell
band s-states of the Kane basis with the valennd bestate. Terms containing result
in an anisotropic band structure near Ehpoint if y, # y,. The parametef is due to

the bulk inversion asymmetry (BIA) and causes spilitting of the bands.
Also known as Dresselhaus splitting [10], BIA iedd spin-splitting occurs in
zinc-blende semiconductors due to the fact thatdifferent kinds of atoms (e.g., Ga and

As, Ga and Sb, etc...) exist, resulting in asymic@twave functions about an axis of

symmetry (e.g., (100) axis). This means that wKilamer’s theorent(k 1) = E(- k1)
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is satisfied for all values df, the situation away frok= 0 is that E(k 1) # E(k!). In
fact, spin-splitting of the conduction banl(band) due to BIA is proportional i3 for

small values ok in bulk zinc-blende semiconductors. However, in 2DEGesgstsuch
as heterostructures, a linear dependendeamturs too. The valence bands exhibit linear
BIA splitting in both the bulk and 2DEG cases. Thoroughkcuksions of thek-
dependence of BIA spin-splitting can be found in Zawadaki Rfeffer [43] and Silsbee
[44].

Finally, note that the matrix operator of Eq. (82) sloet include the effects of
stress and strain or the influence of a magnetic field.oOrse, these effects undoubtedly
will modify the k-dependence on spin-splitting. However, it must be oeet that the
Kane model inclusive of these effects has been deriveskbgral researchers, notably

Trebin et al. [45].
Quantum Well Structure

To test the applicability of the Kane approach, Eqg. (82) been applied to the

symmetricaguantum well shown in Figure 8.
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Figure 8. Symmetrical Quantum Well. Though not shown,ieeavalence split off band

also exhibits a band offset. The dimensions of the a&l chosen so as to be able to

compare to the tight-binding model results of Chang andI®etm[46].

To start, one applies the operafopr— —iz0to all k, terms (denoted by the ~) in

the eigenvalue equation with matrix operator girekq. (82). This operation is done to

thek, terms only, since quantization is assumed to twegalhe z-direction. In doing this,

it is convenient to note that the resultant matrith the matrix operator given explicitly

included then takes the form,

Flllji + BllD z + C:11+ Dll tee

F81D§ + BBlDZ + C81+ D81

I:1Q22+ Blg Z+ C18+ D18

Fspzﬁ' Bebl ,+ Cegt Dey

46

Xl,z
XZ,Z

X7,z
XB,Z

Xl,z
XZ,Z

X7,z
XS,Z

, (86)



where theF andB terms denote coefficients t§°and £' order partial derivatives w.r.t.
z, respectively. Th€ terms denote potential offsets, and Ihe¢erms indicate all other
terms not operated on by the momentum operator. Keepnuh timat all term$, C, D,
and F are actuallyz—dependent functions, though not denoted as such to ease the
notation.

To ensure Hermiticity of the resulting matrix at tmeterostructure interfaces, |

use following discretization scheme as noted in Eppengk [@f7]:

0 1 0 0
B(Z)E »5[8(2)6—2 + 6—23 3} , (13)
0? 0 0

Equations (13) and (14) yield

o _ 1 _ _
B(2) 5 - 4AZ[ZB(Z))(Z+1 2B, - ( Bz 1 Ez1)y,] s
~ B t ;Kzﬂ_)(z—l
20z
and

a7



o 0 _ (F@, F(z+D)- F(z-1) ) Raz21)- Rzl
7 7%, [Azz i 4N jXZ’Ll{AzZ an 2 j)(z_l

2F(2)
- X (16)
( A22 j z

F(2X,, .+ FQx,_~2F(x,
2

Az

It was later noticed the approximations of equation (1%16) did not degrade results, so

| used them to transform the matrix from the bulk toztgpiantized situation. Thus,

aZX F(Z)/Yz+1+ F( Z)/Yz—l_2 F( Z/Yz

2 P AZ ()
6)( Xen "X

B(2 3 B( 2)—2AZ (18)

At this point, a word of caution is in order. Applg equations (13) and (14) is known as
using “symmetrizing” boundary conditions. Burt [1B&s argued that this approach is
technically incorrect for abrupt interfaces. Howevas observed in the simulations of
Meney et al. [23], for the energy ranges of inter@gsss than 50meV) the error is

miniscule, especially when using an 8-band model.

Applying (17) and (18) to (10) results in a matoixthe form shown in Figure 3.
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8x8 8x8 l

8x8 8x8 &8 l

XBl

8x8 8x8 8x8 !

XB,Z—Z

8x8 8x8 8x8 !

)(12—2

XB,z—l

8x8 8x8 8x8 l

XB z-1

8x8 8x8 l

Figure 3: General form of the expanded 8-band Kane M&agh point in real-space, along the
guantized z-axis corresponds to an 8-row block in this xnatri

To further clarify the discretization scheme, figuteshows what the scheme
would be for a simple 2-band matrix evaluated at 3 pomteal-space [(z - 1), z, (z + 1)
] along the z axis. Of course, all the coefficientsCBD, F) are z-dependent.
Also, note that the C terms only appear in the diag@sathey are the potential offsets

inclusive in theE (k,) term of (6).
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The matrix denoted in Figure 3 was coded in FORTRAN anduated using the LAPACK
ZHEEVX eigenvalue/eigenvector solver subroutine. The petemsy, , ), , ),, S and the
parameterized value gd of (11a,c) were chosen in accordance with Table Emgenga et al.
[17], as shown below in Figure 5. The paramgtevas chosen to be ~17 e¥® in the GaAs
well and ~12 eVA° in the AlGaAs cladding layers, in accordance with heotEppenga and

Schuurmans paper [24]. Additionally, a mesh spadingf 1nm was used.

[ 2m /P i .
eV 5 g ¥Fi Ti
GaAs 28.196 —3.519 1.673 —0.266 0,250
l:__"r_ar_. :5)_5}1.3._;5&5 . ?5.95_’9 —_EEHJE 1.789 ) _—D.QE& (L3R5

Figure 5. k.p parameters used in this work (reproduced Tiaste Il of [17]).

The results, depicted in Figure 6a for the valence aa@ in good agreement with the
Chang and Schulman tight binding calculation of Figure 6b, [@Bjch requires several more
adjustable fitting parameters other thayy,, ),, s and p. The labels of the bands (HH1, LH1,
etc...) of Fig. 6b also apply to Fig. 6a. and define thdqrenant character of the bandkat O.
This was proven by comparing the relative amplitudes ofythenvelope functions (where
signifies the HH, LH, etc... band index) in equation (9) tlee various sub-bands kt= 0. In
producing Fig. 6a the band offset depicted in figure 2 waserhto be split 85/15 % over the
conduction/ valence bands, to be consistent with [17][22]d However, experimental studies

have since indicated that a 65/35 % split is more t&alis
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Figure 6a (top): valence band dispersion in 19.2 nm quanilinas calculated with 8-band k.p
method. Figure 6b (bottom): Chang & Schulman tight-bindegults. The labels (HH1, HH2,

etc...) apply to Figure 6a also, as explained in the text.
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Although Figure 6 indicates that the 8-band k.p model is usefuaccurately
describing band structure in the vicinity of a point of sygtry in the Brillouin zone, the
model does of course have severe limitations. Indeedhstfound that in using (11) to
calculate the bulk band structure of GaAs, the condudiarmd suddenly curves down
and goes negative at about 10% of the path length alongll%t (). Thus, at large
real values ok, the bandgap can “disappear” and “spurious” solutions teigenvalue
problem exist [23]. Therefore, at large valueskothe 8-band k.p approach is not
appropriate. Other methods such as tight-binding methodslmewsed. Higher order k.p
models, such as the 24-band k.p model recently reporteddiyeRet al. [25], could also
possibly be used, though they would be computationally seffi and computer-
memory intensive.
lll. Present Research - Inclusion of SIA Effects inb the 8-band Model
A. Theory

Since the results of Figure 6 indicate that the 8-lsuider developed in section Il is
accurate for low values ¢ (i.e., the energy range of interest spintronic deviesrated at
cryogenic temperatures), the solver is currently being uiset/estigate SIA effects in quantum
GaAs/AlGaAs quantum wells, by modifying the Hamiltoniaatnx operator of (11) to include
SIA terms.

As previously mentioned, SIA is of great interest imgpnics, since the promise of
many proposed spintronic devices (refs.[1] - [5] ) reliestlom principle of being able to
modulate the SIA via application of an external eledteld. The “Rashba Effect” [26] predicts

that an electric field applied perpendicular to the plaha 2DEG will cause SIA. In turn, this
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electric field will then relativistically [15, 26] inducn effective magnetic field in the plane of
the 2DEG, effectively lifting the spin-degeneracy of tharge carriers.

Aside from external electric fields, SIA can inrmple be caused by anything that
results in an asymmetrical quantum well. Effectivellys imeans that the penetration of the wave
function in the cladding layers is not identical to beidhes of the well. As reported by Silsbee
[20], this can occur during MBE growth. For example, ié @ttempts to grow a heterostructure
formed by a cation and anion of one kind of atom (denote@lwnd Al respectively) and a
cation and anion of another type of atom (C2 and A2),vomeld desire the following growth
pattern:

...A1-C1-A1-C1-Al1-C1-A1=C2-A2-C2-A2-C2-A2-C2=A1-C1-A1-C1-Al1-C1...

where the ‘=’ sign indicates the heterostructurerface. Typically though MBE growth yields
...A1-C1-A1-C1-Al1-C1-A1=C2-A2-C2-A2-C2-A2-C2-A2=A1-C1-A1-C1-Al1-C1... .

Note that the ¥ structure is asymmetrical.

The general form of the SIA term to be added to (11) ¢owd for SIA splitting of the
conduction band is
Hso=a,0[{ kx?) (19)
where g Pauli spin matrix, as discussed in Section Il angin[15].

The terma;, is a coefficient, typically called the “Rashba Cardint”. In fact, the precise nature
of this term has been controversial. Until recentigny people believed that this term is
proportional to the electric field of the conduction bdnel., -00V ), in which case (19) has an
obvious similarity and/or connection to eqgn. (8) which dbss spin-orbit coupling. However,
Zawadzki and Pfeffer [19] point out that the averagetetefield in a bound state of a quantum

well is zero. Interestingly, they report that has a dependence on trence band offsett the
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interfaces. | am presently studying this matter. Needgts, the value otr, has been

empirically estimated for various structures, one oftlwhiam investigating, as will be discussed
later in this section.

Furthermore, Winkler [27] has stated that the SlAtspd of the HH and LH valence
bands (", bands) should take a form similar to (8),
Hy, =, {kx2)+a, I k<. (20)
Since the basis set considered is the same as tieel&sis of earlier, in (2Q) is defined as the
angular momentum matrix operator for particles of maomanj =3/2 (ref. [15,28]), and)' is
defined asJ® (according to [28], sincd and J® are linearly independent any 4 x 4 matrix

such as equation (20) can be represented as ansioopafJ and J°) .
Most models of SIA induced spin-splitting includely a 2 x 2 term (i.e., equation (19).
However, in this study, both equations (19) and) (28re added to the Hamiltonian matrix

operator (11). Also, | have decided to add a matperator for the split-off hol€, bands. In
doing this, | assume that it has the same forngaaten (19) (using a new coefficieat, )since

the split-off band is also characterized by1/2 .

All the above SIA terms are represented in therimat Figure 7, which are then added
to the Hamiltonian matrix operator (11). (The .P@tsion of this report color-codes the terms
for each coefficient in Figure 7.) . Currently, hdrying to determine if the blank spaces in the

matrix should actually correspond to some typeoaipling terms.

55



‘Alannoadsal

‘swial

VIS

pueq

je-y|dpue

‘pueq

9G

HI/HH

‘pueq

uonoNpPuUod 0}

JEIEY

SJU3IIYB0D

9]

m,Nc

ay1 ‘1xa1 ay1 ul pEsprsy “(TT 'ubs) Joresado xurew ueluoyiweH ayl 01 PapPg 03 swJial bunnds-uids v|S Jo xuren 2 ainbi4

., 8 .,¢ . z ¢
0+0 N DEN—+ Ao DA —+0 0 THH —-'—
L € € T ¢
z ¢
10s  —-'=
T 1
-.€ w -2 N €+ N 4 N N
AN —+ A D 0+0 0+0 DA—+ 0 TH1 —-'—
L € S T ¢
. z ¢
0 No | 180 —-'—
T 1
7 . 8 .z z e
DA—+0 0+0 0+0 N DEN—+ N'D— LHH ==
€ L € £ €
z e
los  —'—
T 1
- € 4 -2 4 € 8 T c [
0 Ao~V + XD N DEN—+ Ao 0 LH1 ==
S L € T €
L z e
XD o | ‘a0 ==
T 1
HH oS THT 180 IHH 10S LHT 180 (cee|
z C 4 z ¢ z z zz zz z e z e (el
_¢ . _c S s na ¢.c S e
€ ¢ T T ¢ T 1 €€ TT T € TT




B. Application to an Asymmetric Quantum Well

Using an 8-band solver apparently similar to the one el@iiv this report, Cartioxa et al.
[29] have recently investigated the relative contributioh8IA and SIA terms to conduction
band splitting in an asymmetrical quantum well, as degdiat Figure 8a. In this structure each
layer is ~ 3.0 nm thick. In Figure 8b they show the B &I1A splitting for a particular

magnitude ofk, (k, =0.01(27/a), a is the lattice spacing) as this vector is rotateslitin thek,

ky plane.
To test my SIA modeling, | have attempted to reproduce thsults. As indicated in

Figure 8C, my results show good agreement with Cartibxa whena, , = a,= 0 (I have not

studied the case when these other coefficients areeran) However, in order to match their
results, | had to calculate the modified Luttinger patams (as in Figure 5), which they did not
provide, for AISb, InAs, and GaSb using data from [9] and [Ho\wever, the calculated values
may not be that accurate. Consequently, the valuesrcfarsithe BIA and SIA coefficients (37.5

eV-A°, 100.5 eVA°) were 2.5 times the values Carioxa et al. quoted.

As expected, Figure 8(b) and 8(c) indicate that thespl#ting of the conduction band is
isotropic (independent of the component of the vedtpnr k). The BIA splitting is greater
along 110 Kk« = ky) than 100 K= O0) due to the differences in the HH effective massHese two
directions ink-space.

In the near future, tHedependence of SIA on the valence bands will be investigat
As noted in Zawadzki and Pfeffer [19], SIA is expectedéolinear ink for LH bands and

proportional tak for HH bands.
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Figure 8: (a) Asymmetrical QW of Cartioxa et al [2®)]. Cartioxa et al. spin splitting for well

of (a). (c) My results, using estimated values ofrtloelified Luttinger parameters.
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4.2 Kip for Nano-Scale p-Channel MOSFET Devices

Electron transport in Si inversion layers has beermthmeary subject of research
for many years now, but hole transport has been relddatthe background mainly due
to the complex valence band-structure in Si. Holespart is affected by the warping and
anisotropy of the valence bands and the band-structarethe approximated with an
effective mass picture or with an analytical band modké advent of alternate device
structures [47,48,49] aimed at boosting the speed and densitySdfcifcuits however,
seems to have revived interest. The important alterhewee technologies are buried
channel strained SiGe p-channel MOSFETSs and surface distrameed Si.

In this section we describe a new way of incorporatiagdbestructure and
guantum effects on hole transport in conventional Shamoel MOSFETs. This is
achieved by coupling a 2D Poisson—1D discretizeds &P Hamiltonian solver
(discussed in Section ??, for the case when the coaduszind contribution is neglected)
self-consistently to the Monte Carlo transport ker(etplained in more details in
Section ??). At present our method only includes phauattering in the full band
model. This method is generic and can easily be extermlauodel strained layer
MOSFETs by incorporating an additional strain Hamiltoniato ithe band-structure
kernel.

The band-structure is calculated using ke method, the Hamiltonian for which

is given in Eq. (), and is repeated here for complesenes
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H{Hk.pHo }H v, (87)

k.p

where Hy, andHs, are the 86 k[P and the spin-orbit Hamiltonians respectivelyis a
6%6 identity matrix,V(2) is the confining potential along the device depth. Repdathe
vector k, with its operator notation a%,=-io/0z, and using a finite difference
discretization, Eg. (82) can be recast into an eigenveduation for the eigenenergies in
the xy-plane, for different values of the in-plakevector, K (kyky).The solution of the
eigenvalue problem involves the diagonalization of a ol block matrix whose rank
is given by &Nz, whereN; is the number of mesh points along the depth direcEon.
the 3D (bulk) carriers in the source and drain, we onlg lthe first two terms of Eq. (82).
This 6x6 Hamiltonian can easily be diagonalized to give the eideesaf 3D carriers at
(ks Ky, ko).

To include carrier scattering within the transport kertied, density of states of
the system (2D and 3D) are required. For the 2D castalwdate the in-plank- vector,
K, as a function of carrier energy.d), band ¢) and subband (n) indices, and the in-
plane azimuth anglg|. For the 3D case, the K-vectdtzp is tabulated as a function of
carrier energyssq), band indexy(), and the azimuthg) and elevationf) angles. In order
to set up the inverse problem, the discretized eigenvalué8Epfor the 2D system can
be recast into a eigenvalue equation K [50] as shown by the following equation,

whereD,, operates orK|;|".

_ 0 _l Vi (| Y (88)
-D;.[D-1E] -D3:D, [y’ v

Sinces,"(kq,ky) is quadratic inK |, the problem involves diagonalizing a matrix whose

rank is twice as large as that of the discretikgil Hamiltonian, i.e. 12Nz. In the 3D
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case, using a similar technique, one can show that tidepn involves diagonalizing a
matrix whose rank is twice that of tk@ Hamiltonian, i.e. 12. Thus, for the 3D case, one
can tabulate the values initially and these can be tisedighout the simulation. The
computational complexity for the 2D case led us to malke fofiowing simplifying
assumptions.

Using a sufficiently high vertical electric field ~5Mdfh, a triangular test-
potential was generated and used to tabulate the dispesasidrdensity of states (DOS)
of the ground state subbands in each band (heavy-hole Hitthtide LH and split off-
SO). It was then assumed that for the case of acogdining potential in the device, the
dispersions in each subband for a particular band woeldyiben by the tabulated
(triangular-well) dispersion of the ground state subbéanithed corresponding band, thus
allowing us to capture the basic features of subband arpsotrevarping and
nonparabolicity. The only effect of the ‘real’ configi potential in the device would be
the translations of the dispersions on the energy laxithe subband energies at the
point.

ey (k. k) =[e)(K, k)=£,(0,0)]+¢,(0,0) - (89)
For the inverse problem, a similar approach is used. ridmgtilar test potential is used
in the inverse solver, in order to tabulate the in-@ldrvectorsK ™ (e2q,®) for a set of
chosen €,p,¢). Having so tabulated in-plarké-vectors for the lowest subband in each
band, we assume that the same dispersion holds atso evhploying the actual device

potential for all the subbands of the given band, i.e.
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K" (60 D=K" €59 - (90)

The Monte Carlo particle based simulator handlesrdmgsport of holes through
the device and is described in much more details in Se@florHaving calculated the
hole band-structure in the contacts and the active deegieni.e. under the gate, the
guantum mechanical hole density in the channel, is cédtukself consistently with the
Poisson equation and the 2D band-structure code. Holeékearenitialized in real space
based on the local carrier density and their energwyitialized by assuming a thermal
distribution. The present version of our simulator aot® only for phonon scattering
within the isotropic approximation, but uses overlap factalculated from the actual
eigenfunctions in each subband. As the carriers drift rutigeinfluence of the electric
field due to the applied bias, the confining potential chaagésthis in turn changes the
eigenenergies and the eigenfunctions. As a result,cdittesng rates must be updated
frequently during the simulation. Within the scope of¢berent model we have assumed
the holes to be quasi 3D particles in the source and degions and have used
appropriate models to treat these boundary conditioflesteely. When converting a
bulk (3D) Monte Carlo particle into a low-dimensional2D) particle occupying a
subband in the inversion layer, the difference betweertdler energysp and the in-
plane kinetic energy,p gives the subband energy'. The carrier subband is then
determined by choosing a subband with the minimum erroubband energy anel",
the calculated energy. In the opposite case of convatitig-particle into a bulk carrier,
the 3D carrier energy is given byp=exp+¢,". By scanning the elevation anglécom the

tabulated values of the 3B-vector and preserving the in plane azimpttheK ;p vector
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which minimizes the error in the magnitude of the in-plnap vector is chosen as the
3D carrier momentum of the bulk particle.

The isosurfaces of the lowest Heavy, Light and Sfiliswbbands, for the case of
the triangular test potential are shown in Figure 9. Nlogéestrong warping of the heavy
hole band when compared with the fairly regular shapethé light hole and the split off
bands which makes it extremely difficult for analgliddand models to describe the
valence band-structure accurately. The hole-densiyabés is determined by performing
a surface integral over these isosurfaces and thedbeareised to determine the carrier

scattering rates in the channel.

2EH9

ETEE
SERBEREITE"

K, ()

0 3R+ -2EHDI
K, (m") K, (m)

Figure 9. Isosurfaces of the lowest lying HH, LH and SO anbdb on a (001) oriented

2EH9

substrate.

The density of states for the confined carriers is shanwrFigure 10. The
deviation of the density of states obtained by a futidbealculation from a regular step-
like profile expected out of an effective-mass type apijpnation is clearly seen in the
case of the light hole and split off bands, whertdasheavy hole density of states looks

more like a step function.
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Figure 10. Density of States for channel (triangular pesential) and bulk (3D) carriers

respectively fronk[p calculations.

The output characteristics of a 25 nm p-channel convait®nMOSFET are
shown in Figure 11. Significant DIBL is seen in the ottglaracteristics in this case.
Only phonon scattering (acoustic and optical phonors)ireriuded in this calculation.
An equivalent effective mass two band (Heavy and LigHe iBands) model with similar
scattering mechanisms included, underestimates the curreabday 14%. Thus, it is
clear that the effective mass approximations is nadbiel and, therefore, band-structure
calculations are required to accurately predict the déutourent under high field

transport conditions in nano-scale MOSFETS, in paeicthep-channel ones.
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Figure 11. Output characteristics of a 25 nm p-channel SifEJISalculated using the

full band and the effective mass model.
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