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Electronic Band Structure Calculation 

 The basis for discussing transport in semiconductors is the underlying electronic 

band structure of the material arising from the solution of the many body Schrödinger 

equation in the presence of the periodic potential of the lattice, which is discussed in a 

host of solid state physics textbooks. The electronic solutions in the presence of the 

periodic potential of the lattice are in the form of Bloch functions 

 ( ),
i

n nu eψ ⋅= k r
k k  (1) 

where k is the wavevector, and n labels the band index corresponding to different 

solutions for a given wavevector. The cell-periodic function, ( )knu , has the periodicity of 

the lattice and modulates the traveling wave solution associated with free electrons. 

 A brief look at the symmetry properties of the eigenfunctions would greatly 

enhance the understanding of the evolution of the bandstructure. First, one starts by 

looking at the energy eigenvalues of the individual atoms that constitute the 

semiconductor crystal. All semiconductors have tetrahedral bonds that have sp3 

hybridization. However, the individual atoms have the outermost (valence) electrons in s- 

and p-type orbitals. The symmetry (or geometric) properties of these orbitals are made 

most clear by looking at their angular parts  
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Let’s denote these states by |S>, |X>, |Y> and |Z>. Once one puts the atoms in a crystal, 

the valence electrons hybridize into sp3 orbitals that lead to tetrahedral bonding. The 

crystal develops its own bandstructure with gaps and allowed bands. For semiconductors, 

one is typically worried about the bandstructure of the conduction and the valence bands 

only. It turns out that the states near the band-edges behave very much like the |S> and 

the three p-type states that they had when they were individual atoms. 

 

Figure 1: The typical bandstructure of semiconductors. For direct-gap semiconductors, 

the conduction band state at k=0 is s-like. The valence band states are linear 

combinations of p-like orbitals. For indirect-gap semiconductors on the other hand, even 

the conduction band minima states have some amount of p-like nature mixed into the s-

like state. 
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Electronic band structure calculation methods can be grouped into two general 

categories [1].  The first category consists of ab initio methods, such as Hartree-Fock or 

Density Functional Theory (DFT), which calculate the electronic structure from first 

principles, i.e. without the need for empirical fitting parameters. In general, these 

methods utilize a variational approach to calculate the ground state energy of a many-

body system, where the system is defined at the atomic level. The original calculations 

were performed on systems containing a few atoms. Today, calculations are performed 

using approximately 1000 atoms but are computationally expensive, sometimes requiring 

massively parallel computers. 

In contrast to ab initio approaches, the second category consists of empirical 

methods, such as the Orthogonalized Plane Wave (OPW) [2], tight-binding [3] (also 

known as the Linear Combination of Atomic Orbitals (LCAO) method), the pk ⋅  method 

[4], and the local [5], or the non-local [6] empirical pseudopotential method (EPM). 

These methods involve empirical parameters to fit experimental data such as the band-to-

band transitions at specific high-symmetry points derived from optical absorption 

experiments.  The appeal of these methods is that the electronic structure can be 

calculated by solving a one-electron Schrödinger wave equation (SWE). Thus, empirical 

methods are computationally less expensive than ab initio calculations and provide a 

relatively easy means of generating the electronic band structure. Due to their wide 

spread usage, in the rest of this section we will review some of the most commonly used 

ones, namely the empirical pseudopotential method, the tight-binding and the k·p 

method. The empirical pseudopotential method is described in Section 1.1, the tight-

binding is discussed in Section 1.2 and the k·p method is described in Section 1.3. 
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Applications of the k·p method are given in Section 1.4, which is followed by solutions 

of the effective mass Schrödinger equation for metal-oxide-semiconductor devices and 

for heterostructures. We finish this chapter by a brief description of the carrier dynamics 

that is given in Section 1.5. 

Spin-Orbit Coupling 

Before proceeding with the description of the various empirical band structure 

methods, it is useful to introduce the spin-orbit interaction Hamiltonian. The effects of 

spin-orbit coupling are most easily considered by regarding the spin-orbit interaction 

energy HSO as a perturbation. In its most general form, HSO operating on the wavefunctions 

kψ  is then given by 

 Error! Objects cannot be created from editing field codes. (3) 

where V is the potential energy term of the Hamiltonian, and σ  is the Pauli spin tensor. It 

can also be written in the following form as an operator on the cell-periodic function 

 [ ] [ ] σ⋅×∇+σ⋅×∇= kp V
cm

V
cm

HSO 22

2

22 44

hh
 . (4) 

The first term is k-independent and is analogous to the atomic spin-orbit splitting term. 

The second term is proportional to k and is the additional spin-orbit energy coming from 

the crystal momentum. Rough estimates indicate that the effect of the second term on the 

energy bands is less than 1 percent of the effect of the first term. The relatively greater 

importance of the first term comes from the fact that the velocity of the electron in its 

atomic orbit is very much greater than the velocity of a wavepacket made up of 

wavevectors in the neighborhood of k. 
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 The spin-orbit splitting occurs in semiconductors in the valence band, because the 

valence electrons are very close to the nucleus, just like electrons around the proton in the 

hydrogen atom. Furthermore, we can make some predictions about the magnitude of the 

splitting – in general, the splitting should be more for crystals whose constituent atoms 

have higher atomic number – since the nuclei have more protons, hence more field! In 

fact, the spin-orbit splitting energy ∆ of semiconductors increases as the fourth power of 

the atomic number of the constituent elements. That is because the atomic number is 

equal to the number of protons, which determines the electric field seen by the valence 

electrons. In Figure 2, the spin-orbit splitting energy ∆ is plotted against an average 

atomic number and a rough fit using power law is used. 

 

Figure 2. The spin-orbit splitting energy ∆ for different semiconductors plotted against 

the average atomic number Zav. 
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Rashba and Dresselhaus Spin Splitting 

The manipulation of the spin of charge carriers in semiconductors is one of the 

key problems in the field of spintronics [7]. In the paradigmatic spin transistor proposed 

by Datta and Das [8], the electron spins, injected from a ferromagnetic contact into a two-

dimensional electron system are controllably rotated during their passage from source to 

drain by means of the Rashba spin-orbit coupling [9]. The coefficient α , which describes 

the strength of the Rashba spin-orbit coupling, and hence the degree of rotation, can be 

tuned by gate voltages. This coupling stems from the inversion asymmetry of the 

confining potential of two-dimensional electron (or hole) systems. In addition to the 

Rashba coupling, caused by structure inversion asymmetry (SIA), also a Dresselhaus type 

of coupling contributes to the spin-orbit interaction [ 10 ]. The later is due to bulk 

inversion asymmetry (BIA), and the interface inversion asymmetry (IIA). The BIA and 

the IIA contributions are phenomenologically inseparable and described below by the 

generalized Dresselhaus parameter β . Both Rashba and Dresselhaus couplings result in 

spin splitting of the band and give rise to a variety of spin-dependent phenomena that 

allow one to evaluate the magnitude of the total spin splitting of electron subbands.  

However, usually it is not possible to extract the relative contributions of Rashba 

and Dresselhaus terms to the spin-orbit coupling. To obtain the Rashba coefficient α , the 

Dresselhaus contribution is normally neglected. At the same time, Dresselhaus and 

Rashba terms can interfere in such a way that macroscopic effects vanish though the 

individual terms are large. For example, both terms can cancel each other, resulting in a 

vanishing spin splitting in certain k-space directions. This cancellation leads to the 

disappearance of an antilocalization, the absence of spin relaxation in specific 
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crystallographic directions, and the lack of SdH beating. In Ref. [11], the importance of 

both Rashba and Dresselhaus terms was pointed out: turning α  such that α β=  holds, 

allows one to build a non-ballistic spin-effect transistor. 

The consequences of the Rashba and Dresselhaus terms on the electron dispersion 

and on the spin orientation of the electronic states of the two-dimensional electron gas are 

summarized below. We consider QWs of the zinc-blende structure grown in the [001] 

direction. Then, the spin-orbit part of the total Hamiltonian contains the Rashba as well as 

the Dresselhaus term according to 

 ( ) ( )x y y x x x y yk k k kα σ σ β σ σ− + −  (5) 

where k is the electron wave-vector, and σ  is the vector of the Pauli matrices. Here, the 

x-axis is aligned along the [100] direction, y-axis is aligned along the [010] direction and 

z-axis is the growth direction. Note that this Hamiltonian contribution contains only 

terms linear in k. As confirmed experimentally [12], terms cubic in k change only the 

strength of β  leaving the Hamiltonian unchanged. 

1. The Empirical Pseudopotential Method 

The concept of pseudopotentials was introduced by Fermi [13] to study high-lying 

atomic states. Afterwards, Hellman proposed that pseudopotentials be used for 

calculating the energy levels of the alkali metals [14]. The wide spread usage of 

pseudopotentials did not occur until the late 1950s, when activity in the area of 

condensed matter physics began to accelerate. The main advantage of using 

pseudopotentials is that only valence electrons have to be considered. The core electrons 

are treated as if they are frozen in an atomic-like configuration. As a result, the valence 

electrons are thought to move in a weak one-electron potential. 
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The pseudopotential method is based on the orthogonalized plane wave (OPW) 

method due to Herring [2]. In this method, the crystal wavefuntion kψ  is constructed to 

be orthogonal to the core states. This is accomplished by expanding kψ  as a smooth part 

of symmetrized combinations of Bloch functions kϕ , augmented with a linear 

combination of core states. This is expressed as 

 
∑ Φ+=

t

ttb ,, kkkk ϕψ ,                                               (6) 

where tb ,k  are orthogonalization coefficients and t,kΦ  are core wave functions. For Si-

14, the summation over t in Eq. (6) is a sum over the core states 1s2 2s2 2p6. Since the 

crystal wave function is constructed to be orthogonal to the core wave functions, the 

orthogonalization coefficients can be calculated, thus yielding the final expression 

 
∑ ΦΦ−=

t

tt ,, kkkkk ϕϕψ .                                       (7) 

To obtain a wave equation for kϕ , the Hamiltonian operator  

 
CV

m

p
H +=

2

2

 ,                                                 (8) 

is applied to Eq. (7), where VC is the attractive core potential, and the following wave 

equation results 

 
kk ϕϕ EVV

m

p
RC =







++  

2

2

,                                       (9) 

where VR  represents a short-range, non-Hermitian repulsion potential, of the form 

 

( )
∑

ΦΦ−
=

t

ttt
R

EE
V

k

kkk

ϕ
ϕ ,,

 . (10)                                    

Et in Eq. (10) represents the atomic energy eigenvalue, and the summation over t 

represents a summation over the core states.  The result given in Eq. (9) can be thought of 
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as wave equation for the pseudo-wave function, kϕ , but the energy eigenvalue E 

corresponds to the true energy of the crystal wave function kψ . Furthermore, as a result 

of the orthogonalization procedure, the repulsive potential VR, which serves to cancel the 

attractive potential VC, is introduced into the pseudo-wave function Hamiltonian. The 

result is a smoothly varying pseudopotential VP = VC + VR.  This result is known as the 

Phillips-Kleinman cancellation theorem [ 15 ] which provides justification why the 

electronic structure of strongly-bound valence electrons can be described using a nearly-

free electron model and weak potentials. 

To simplify the problem further, model pseudopotenials are used in place of the 

actual pseudopotential. Figure 3 summarizes the various models employed. Note that the 

3D Fourier transforms (for bulk systems) of each of the above-described model potentials 

are of the following general form 

 ( )cqr
q

Ze
qV cos~)(

2
0

2

ε
 .                                             (11) 

This q-dependent pseudopotential is then used to calculate the energy band structure 

along different crystallographic directions, using the procedure outlined in the following 

section. 
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(a)   Constant effective potential in the core region: V ( r ) 

r 

 
 
 

  
 

 

≤ 
πε 
− 

 

> 
πε 

− 
 

= 
C 

C 

C 

r r 
r 

Ze 

r r 
r 

Ze 
r V 

; 
4 

; 
4 

) ( 

0 

2 0 

2 

  

  

(b)   Empty core model: V ( r ) 
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Figure 3. Various model potentials. 

1.1 Description of the Empirical Pseudopotential Method 

Recall from the previous section that the Phillips-Kleinman cancellation theorem 

provides a means for the energy band problem to be simplified into a one-electron-like 

problem. For this purpose, Eq. (9) can be re-written as 
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kk ϕϕ EV

m

p
P =







+  

2

2

 ,                                             (12) 

where VP is the smoothly varying crystal pseudopotential. In general, VP is a linear 

combination of atomic potentials, Va, which can be expressed as summation over lattice 

translation vectors R and atomic basis vectors ττττ to arrive at the following expression 

 
( ) ( )τRrr

R τ

−−=∑∑ aP VV  .                                         (13) 

To simplify further, the inner summation over ττττ can be expressed as the total potential, 

V0, in the unit cell located at R. Eq. (13) then becomes 

 
( ) ( )∑ −=

R

Rrr 0VVP  .                                               (14) 

Because the crystal potential is periodic, the pseudopotential is also a periodic function 

and can be expanded into a Fourier series over the reciprocal lattice to obtain 

 
( ) ( ) rG

G

Gr ⋅∑= i
P eVV  0  ,                                           (15) 

where the expansion coefficient is given by 

 
( ) ( ) rGrG ⋅−

∫= ieVrdV    
Ω

1
0

3
0  ,                                     (16) 

and Ω is the volume of the unit cell. 

To apply this formalism to the zincblende lattice, it is convenient to choose a two-

atom basis centered at the origin (R = 0).  If the atomic basis vectors are given by ττττ1 = ττττ = 

-ττττ2, where ττττ, the atomic basis vector, is defined in terms of the lattice constant a0 as ττττ = 

a0(1/8,1/8,1/8), V0(r) can be expressed as 
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( ) ( ) ( )τrτrr 210 ++−= VVV  ,                                     (17) 

where V1 and V2 are the atomic potentials of the cation and anion. Substituting Eq. (17) 

into Eq. (16), and using the displacement property of Fourier transforms, V0(r) can be 

recast as 

 
( ) )G()G(G 2

G
1

G
0 VeVeV ii ττ ⋅−⋅ +=  .                                     (18) 

Writing the Fourier coefficients of the atomic potentials in terms of symmetric 

(VS(G)=V1+V2)) and antisymmetric (VA(G)=V1-V2)) form factors, V0(G) is given by 

 
( ) ( ) ( )0 G cos G τ (G) sin G τ (G)S AV V i V= ⋅ + ⋅  ,                                              (19) 

where the prefactors are referred to as the symmetric and antisymmetric structure factors. 

The form factors above are treated as adjustable parameters that can be fit to 

experimental data, hence the name empirical pseudopotential method. For diamond-

lattice materials, with two identical atoms per unit cell, the VA=0 and the structure factor 

is simply ( )τG ⋅cos . For zinc-blende lattice, like the one in GaAs material system, VA≠0 

and the structure factor is more complicated. 

Now with the potential energy term specified, the next task is to recast the 

Schrödinger equation in a matrix form.  Recall that the solution to the Schrödinger wave 

equation in a periodic lattice is a Bloch function, which is composed of a plane wave 

component and a cell periodic part that has the periodicity of the lattice, i.e. 

 ( ) ( ) rG

G'

rk
k

rk
k Grr ⋅⋅⋅

∑== 'iii e'Ueue )(ϕ   .                            (20) 

By expanding the cell periodic part uk(r) of the Bloch function appearing in Eq. (20) into 

Fourier components, and substituting the pseudo-wave function kϕ  and potential V0 into 

the Schrödinger wave equation, the following matrix equation results 
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( ) ( ) ( ) ( ) 0

2G 'G
0

22

=∑












∑ ′′−+











−+

G GGG 
Gk

UVUE
m

h
.             (21) 

The expression given in Eq. (21) is zero when each term in the sum is identically zero, 

which implies the following condition 

 
( ) ( ) ( ) ( ) 0

2 '
0

22

=∑ ′′−+











−+

G
G GGG

Gk
UVUE

m

h
 .                 (22) 

In this way, the band structure calculation is reduced to solving the eigenvalue problem 

specified by Eq. (22) for the energy E. As obvious from Eq. (20), ( )G ′U  is the Fourier 

component of the cell periodic part of the Bloch function.  The number of reciprocal 

lattice vectors used determines both the matrix size and calculation accuracy. 

The eigenvalue problem of Eq. (22) can be written in the more familiar form 

UHU E= , where H is a matrix, U is a column vector representing the eigenvectors, and 

E is the energy eigenvalue corresponding to its respective eigenvector. For the diamond 

lattice, the diagonal matrix elements of H are then given by 

 
2

2

, 2 iji m
H Gk += h

 ,   (23)                                        

for i = j, and the off-diagonal matrix elements of H are given by 

 ( ) ( )[ ]τGGGG ⋅−−= jijiSji VH cos, ,                            (24) 

for i ≠ j. Note that the term VS(0) is neglected in arriving at Eq. (23), because it will only 

give a rigid shift in energy to the bands. The solution to the energy eigenvalues and 

corresponding eigenvectors can then be found by diagonalizing matrix H. 
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1.2 Implementation of the Empirical Pseudopotential Method for Si and Ge 

For a typical semiconductor system, 137 plane waves are sufficient, each 

corresponding to vectors in the reciprocal lattice, to expand the pseudopotential. The 

reciprocal lattice of a face-centered cubic (FCC), i.e. diamond or zinc-blende structure, is 

a body-centered cubic (BCC) structure.  Reciprocal lattice vectors up to and including the 

10th-nearest neighbor from the origin are usually considered which results in 137 plane 

waves for the zinc-blende structure.  The square of the distance from the origin to each 

equivalent set of reciprocal lattice sites is an integer in the set |G2| = 0, 3, 4, 8, 11, 12, … 

where |G2| is expressed in units of (2π/ao)
2.  Note that the argument of the 

pseudopotential term VS in Eq. (24) is the difference between reciprocal lattice vectors.  It 

can be shown that the square of the difference between reciprocal lattice vectors will also 

form the set of integers previously described.  This means that VS is only needed at 

discrete points corresponding to nearest-neighbor sites.  The pseudopotential, on the other 

hand, is a continuous quantity.  Therefore, its Fourier transform VS(q) is also a continuous 

function that is shown in Figure 4.  The points corresponding to the first three nearest 

neighbors are also indicated on this figure.  
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q2=3

q2=8 q2=11

q2=3

q2=8 q2=11

 

Figure 4. Fourier transform of the pseudopotential. (Note that 'GG −=q  ) 

Recall that the pseudopotential is only needed at a few discrete points along the 

V(q) curve.  The discrete points correspond to the q2-values that match the integer set 

described previously.  There is some controversy, however, regarding the value of VS as q 

vanishes.  There are two common values seen in the literature: V1(0)= -3/2EF and V1(0) = 

0.  In most cases, the term VS(0) is ignored because it only gives a rigid shift in energy to 

the bands.  The remaining form factors needed to compute the band structure for non-

polar materials correspond to q2 = 3, 8, and 11. For q2 = 4, the cosine term in Eq. (24) 

will always vanish.  Furthermore, for values of q2 greater than 11, V(q) quickly 

approaches zero.  This comes from the fact that the pseudopotential is a smoothly varying 

function, and only few plane waves are needed to represent it. If a function is rapidly 

varying in space, then many more plane waves would be required. Another advantage of 

the empirical pseudopotential method is that only three parameters are needed to describe 

the band structure of non-polar materials. 
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Table 1:  Local Pseudopotential Form Factors. 

Form Factor 
(Ry) 

Si Ge 

V3 -0.2241 -0.2768 

V8 0.0551 0.0582 

V11 0.0724 0.0152 

 

Using the form factors listed in Table 1, where the Si form factors are taken from [16] 

and the Ge form factors are taken from [17], the band structures for Si and Ge are plotted 

in Figure 5 [18].  Note that spin-orbit interaction is not included in these simulations. The 

lattice constants specified for Si and Ge are 5.43Å and 5.65Å, respectively.  Si is an 

indirect band gap semiconductor.  Its primary gap, i.e. minimum gap, is calculated from 

the valence band maximum at the Γ-point to the conduction band minimum along the ∆ 

direction, 85% of the distance from Γ to X.  The band gap of Si, is calculated to be Eg
Si = 

1.08 eV, in agreement with experimental findings.  Ge is also an indirect band gap 

semiconductor.  Its band gap is defined from the top of the valence band at Γ to the 

conduction band minimum at L.  The band gap of Ge is calculated to be Eg
Ge = 0.73 eV.  

The direct gap, which is defined from the valence band maximum at Γ to the conduction 

band minimum at Γ, is calculated to be 3.27 eV and 0.82 eV for Si and Ge, respectively.  

Note that the curvature of the top valence band of Ge is larger than that of Si.  This 

corresponds to the fact that the effective hole mass of Si is larger than that of Ge.  Note 

that the inclusion of the spin-orbit interaction will lift the triple degeneracy of the bands 

at the Γ point, leaving doubly-degenerate heavy and light-hole bands and a split-off band 
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moved downward in energy by few 10's of meV (depending upon the material under 

consideration). 

 

Figure 5. Left panel: band structures of silicon. Right panel: band structure of 

germanium. 

In summary, the local empirical pseudopotential method described in this section 

is rather good for an accurate description of the optical gaps. However, as noted by 

Chelikowsky and Cohen [19], when these local calculations are extended to yield the 

valence-band electronic density of states, the results obtained are far from satisfactory. 

The reason for this discrepancy arises from the omission of the low cores in the 

derivation of the pseudopotential in the previous section.  This, as previously noted, 

allowed the usage of a simple plane wave basis. To correct for the errors introduced, an 

energy-dependent non-local correction term is added to the local atomic potential. This 

increases the number of parameters needed but leads to better convergence and more 

exact band-structure results [20,21]. 
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1.3 Empirical Pseudopotential Method for GaN 

 In the previous section, the implementation of the empirical pseudopotential 

method for diamond and zinc-blende material systems was explained in details and 

representative bandstructure simulation results for the Si and Ge material system were 

presented. In this section we want to point out (without giving much details) that the 

empirical pseudopotential method can be successfully used for describing the optical 

gaps in a variety of state-of-the-art materials, such as GaN, AlN and InN, that exhibit a 

wurtzite structure. The great interest in the group-III nitride material system can be 

attributed to the promissing electrical and optical properties of the binary compounds 

AlN, GaN, InN and their alloys. These binary compounds usually crystallize in the 

wurtzite structure (α-nitrides). In has been demonstrated that, by using modified structure 

parameters, representative of a wurtzite material system, and discussed in more details in 

Ref. [22], one can obtain with the Empirical Pseudopotential Method the complete band 

dispersion of valence and conduction bands and reliably provide necessary band-structure 

parameters such as the optical gaps and the effective masses. Necessary ingredients in 

these calculations are the use of the continuous ionic model potentials, which are 

screened by the model dielectric function derived for semiconductors by Levine and 

Louie [23]. Such approach allows for a continuous description in the reciprocal space, the 

explicit inclusion of bond charges, and the exploitation of the ionic model potential 

transferability to other crystal structures, namely, the wurtzite crystal. In Ref. [24], it was 

shown by way of an example of wurtzite phase nitrides that crystal-specific anisotropies 

can be taken into account via proper choice of the screening function. A band-structure of 
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a GaN material system obtained by using the approach given in Ref. [24] is shown in 

Figure 6. 

 

Figure 6. GaN bandstructure as calculated by Yamakawa et al. [22]. 

2. The Tight-Binding Method 

Tight binding (TB) is a semi-empirical method for electronic structure 

calculations. While it retains the underlying quantum mechanics of the electrons, the 

Hamiltonian is parametrized and simplified before the calculation, rather than 

constructing it from first principles. The method is detailed by Slater and Koster [25], 

who laid the initial ground work. Conceptually, tight binding works by postulating a basis 

set which consists of atomic-like orbitals (i.e. they share the angular momentum 

components of the atomic orbitals, and are easily split into radial and angular parts) for 

each atom in the system, and the Hamiltonian is then parametrized in terms of various 

high symmetry interactions between these orbitals. For tetrahedral semiconductors, as 

already noted, a conceptual basis set of 1 s-like orbital and 3 p-like orbitals has been 
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used. In the most common form of tight binding (nearest neighbor, orthogonal TB), the 

orbitals are assumed to be orthogonal and interactions between different orbitals are only 

allowed to be non-zero within a certain distance, which is placed somewhere between the 

first and second nearest neighbors in the crystal structure.  A further simplification which 

is made, is to neglect three-center integrals (i.e. an interaction between orbitals on atoms 

A and B which is mediated by the potential on atom C), meaning that each interaction is a 

function of the distance between the atoms only. 

The quantitative description of the method presented below is due to Chadi and 

Cohen [3].  Let us denote the position of the atom in the primitive cell as 

 ljjl rRr += , (25)  

where Rj is the position of the j-th primitive cell and rl is the position of the atom within 

the primitive cell. Let  hl(r) be the Hamiltonian of the isolated atom, such that  

 ( ) ( )jlmlmljlmll Eh rrrr −φ=−φ  , (26) 

where Eml and φml are the eigenvalues and the eigenfunctions of the state indexed by m.  

The atomic orbitals φml are called Löwdin orbitals [26], and they are different from the 

usual atomic wavefunctions in that they have been constructed in such a way that 

wavefunctions centered at different atomic sites are orthogonal to each other.  The total 

Hamiltonian of the system is then 

 ( )∑ −=
lj

jllhH
,

0 rr  . (27) 

Note that the sum over l refers to a sum within the different atoms in the basis, therefore, 

l = 1, 2 for diamond and zinc-blende crystals.  The unperturbed Bloch functions, that 

have the proper translational symmetry, are constructed to be of the following form 
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 ( )∑ −φ=Φ ⋅

j
jlml

i
mlk

jle
N

rr
kr1

 . (28) 

The eigenvalues of the total Hamiltonian H = H0 + Hint (where Hint is the interaction part 

of the Hamiltonian) are then represented as a linear combination of the Bloch functions 

 mlk
ml

mlk c Φ∑=Ψ  . (29) 

Operating with the total Hamiltonian of the system H on kΨ , and using the orthogonality 

of the atomic wavefunctions, one arrives at the following matrix equation 

 [ ] 0'','' =∑ − ml
ml

llmmkmllm cEH  δδ  , (30) 

where the matrix element appearing in the above expression is given by 

 ( ) ( )')(
,''

')( jlmlkjlmlk
j

i
mllm HeH llj rr  rrk

krrR −−∑= ⋅−+ φφ  . (31) 

Note that in the simplest implementation of this method, instead of summing over all the 

atoms, one sums over the nearest-neighbor atoms only. Also note that the index m 

represents the s- and p-states of the outermost electrons (s , X , Y  and Z ), and l is 

the number of distinct electrons in the basis.  For the case of tetrahedrally coordinated 

semiconductors, the number of nearest-neighbors is 4, and are located at 

 













−−=
−−=
−−=

=

4/)1,1,1(

4/)1,1,1(

4/)1,1,1(

4/)1,1,1(

04

03

02

01

ad

ad

ad

ad

 . (32) 

For a diamond lattice, one also defines the following matrix elements 
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 [ ]
[ ]












−=
+=

−=
=

πσ

πσ

σ

σ

3/3/4

3/23/4

3/4

4

ppppxy

ppppxx

spsp

ssss

VVV

VVV

VV

VV

  .  (33) 

As an example, consider the matrix element between two s-states  

 [ ] ( ) σ
⋅⋅⋅⋅ =+++= ss

iiii
ss VgsHseeeeH kdkdkdkdk

12int1,
4321

21
 . (34) 

Notice the appearance of the Bloch sum g1(k) in Eq. (34). This observation suggests that 

for different basis states, there will be four different Bloch sums g1 through g4, of the 

form 

 

[ ]
[ ]
[ ]
[ ]














+−−=

−+−=

−−+=

+++=

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

4321

4321

4321

4321

)(

)(

)(

)(

4

3

2

1

dkdkdkdk

dkdkdkdk

dkdkdkdk

dkdkdkdk

k

k

k

k

iiii

iiii

iiii

iiii

eeeeg

eeeeg

eeeeg

eeeeg

  . (35) 

It is also important to note that the Hamiltonian matrix elements between a s- and a p-

state on the same atom, or two different p-states on the same atom, are zero because of 

symmetry in diamond and zincblende crystals.  The 8×8 secular determinant representing 

all possible nearest-neighbor interactions between the tight-binding s- and p-orbitals 

centered on each atom in the crystal is 
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1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

1 2 3 4

2 1 4

1 1 1 1 2 2 2 2

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

2 * * * * 0 0 0

2 * * *

s k ss sp sp sp

p k sp xx xy xy

p k sp xy xx xy

p k sp xy xy xx

ss sp sp sp s k

sp xx xy xy

S X Y Z S X Y Z

S E E V g V g V g V g

X E E V g V g V g V g

Y E E V g V g V g V g

Z E E V g V g V g V g

S V g V g V g V g E E

X V g V g V g V g

−

− −

− −

− −

− − − −

3

3 4 1 2

4 3 2 1

* 0 0 0

2 * * * * 0 0 0

2 * * * * 0 0 0

p k

sp xy xx xy p k

sp xy xy xx p k

E E

Y V g V g V g V g E E

Z V g V g V g V g E E

−

−

−

 . (36) 

The tight-binding parameters appearing in Eqs. (33) and (36) are obtained by comparison 

with empirical pseudopotential calculations, which are presented in Ref. [3]. 

 

Table 2. Chadi and Cohen tight-binding parameters [3]. 

 Ep - Es Vss Vsp Vxx Vxy 

C 7.40 -15.2 10.25 3.0 8.3 

Si 7.20 -8.13 5.88 1.71 7.51 

Ge 8.41 -6.78 5.31 1.62 6.82 

 

Using the above-described method one can quite accurately describe the valence 

bands, whereas the conduction bands are not reproduced that well due to the omission of 

the interaction with the higher-lying bands.  The accuracy of the conduction bands can be 

improved with the addition of more overlap parameters. However, there are only four 

conduction bands and the addition of more orbitals destroys the simplicity of the method. 
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3. The k·p method 

 In contrast to the previously described empirical pseudopotentials and the tight-

binding methods, the k·p method is based upon perturbation theory [27,28]. In this 

method, the energy is calculated near a band maximum or minimum by considering the 

wavenumber (measured from the extremum) as a perturbation. 

3.1 k•p General Description 

To get a better understanding of the method, let us assume that the Schrödinger 

equation studied is mono-dimensional and stationary. To further elaborate the problem, 

also assume that the particle is surrounded by a potential ~V V V∪= + , where ~V  is the 

periodic potential that has the periodicity of the lattice, and VU  is the confinement 

potential. For this particle, the mono-dimensional Schrödinger wave equation is  

 
2

0 ( ) ( ) ( ) ( )
2

p
H x V x x x

m
ψ ψ λψ

 
= + = 
  

 , (37) 

and VU = 0 if 0 0[ , ]x x x∉ − ; and 0V V= −U  otherwise. Here, V0 and x0 are some arbitrary 

positive constants. If VU  is small, then the solutions to the mono-dimensional 

Schrödinger equation are of the Bloch form (as discussed in the introduction part of this 

section) and are repeated here for completeness for a 1D case. Namely, 

 k( ) ( )i x
k kx e u xψ ⋅=  ,   (38) 

where ( )ku x  is cell periodic part of the Bloch function. The Schrödinger equation can 

then be written as 
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2 2 2

( ) ( ) k p ( ) ( )
2 2k k k k k
p k

H u x V x u x E u x
m m m

   
= + + ⋅ = −   
      

h h
. (39) 

The term ( )/ k pm ⋅h  is treated as a perturbation to H0 for determining ( )ku x  and Ek in 

the vicinity of k = 0 in terms of the complete set of cell-periodic wavefunctions and 

energy eigenvalues at k = 0, which are assumed known. To simplify the form of Eq. (39), 

it is convenient to define 

 
m

k
EE kk 2

22
' h−=  . (40) 

To deal with this problem, we now assume that we have an orthonormal basis 1{ } n
i iζ =  of 

eigenvectors (associated to their eigenvalues iλ ) of the operator 2
~/ 2p m V+  that are of 

a fixed parity (the orbitals may be of s- or p-type). We then project operator kH  on the 

finite dimensional space generated by the iζ ’s, to get 

 
  ,

i k j j ij i j i j

j ij ij ij

H k p V
m
kP Q

ζ ζ λ δ ζ ζ ζ ζ

λ δ

∪= + +

= + +

h

 (41) 

i.e. we arrive at the symmetric eigenvalue matrix 

 

( )

( )

1

( )

ij

ij n

kP

H k Q

kP

λ

λ

 
 
 = +
 
  

L

M O M

L

 , (42) 

the solutions of which provide us the eigenvalues and the corresponding eigenvectors. 

3.2 k•p Theory Near the ΓΓΓΓ Point and for Bulk Materials 

In general practical situation, one either has a bulk-like system or lower-

dimensional systems such as 2D and 1D electron gases in which there is a confinement in 
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one and two directions, respectively. We want to point out that these lower dimensional 

systems are frequently encountered in state-of-the-art devices which makes this general 

discussion of the k•p method very useful. For a general system, with spin-orbit 

interaction included in the model, and using the result for the 1D case given in the 

previous section, the Schrödinger equation is of the following general form: 

( ) ( )
2 2 2

2 2 2
0 0 00 0

( ) ( )
2 24 4

n n n
p k

V V u r E u r
m m mm c m c

σ σ
  

+ ×∇ ⋅ + + ⋅ + ×∇ =      
k k k

k
p p

h h h h
 (43) 

The Hamiltonian in Eq. (43) can be divided into two terms 

 [ ]( 0) ( ) n n nH W u E u= + =k k kk k  , (44) 

where the only k-dependence is preserved in W(k). Next, as in the 1D case, we assume 

that the local single particle of Hamiltonian H(k = 0) has a complete set of eigenfunctions 

0nu , i.e.  

 0 0 0( 0) n n nH u E u= =k  .  (45) 

An arbitrary (“well behaving”) lattice periodic function can be written as a series 

expansion using the eigenfunctions 0nu . We then insert an expansion 

 0( )n
n m m

m
u c u= ∑k k  (46) 

in Eq. (45) and find matrix equation for determining the unknown coefficients ( )n
mc k . 

We multiply from left by *
0nu , integrate and use the orthogonality of the basis functions, 

to get 
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( )
2 2

0 0 02
0 0 0

( ) 0
2 4

n
n n nm n m m

m

k
E E u V u c

m m m c
δ σ

   
− + + ⋅ + ×∇ = ∑           

k
k

p k
h h h

 . (47) 

Solving the above matrix equation then gives the exact eigenstates of the Eq. (43). 

However, this looks good only in principle, the reason being that the calculation becomes 

increasingly complicated as k increases. One has to increase the number of states in the 

expansion given in Eq. (47) and the calculations become numerically unfeasible. 

Therefore this approach is practical only for small wavevector values. 

 When k is small, the non-diagonal terms are small and the lowest order solution 

for eigenstate 0n nu u=k  is ( )n
m nmc δ=k , and the corresponding eigenvalue is given by  

 
2 2

0
02nk n

k
E E

m
= + h

 .  (48) 

If the nondiagonal terms are small, one can improve the above result by using the second 

order perturbation theory 

 
2 2

0 0 0 0
0 0 0

0 0 02
n I m m I n

n n n n
m n n m

u H u u H uk
E E u u

m E E≠
= + + ∑

−k
h

 , (49) 

where  

 ( )2
0 04

IH V
m m c

σ
 

= ⋅ + ×∇  
 

k
p

h h
 .  (50) 

Since the kinetic energy operator is a scalar, the second order eigen-energies can be 

written as 

 
22 2 2

0 2
0 0 002

nm
n n

m n n m

k
E E

m E Em

π
≠

⋅
= + + ∑

−k
kh h

,  (51) 

where 
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 ( )2
0

0 0

4

nm n m

V
m c

u u

π σ

π π

 = + ×∇

 =

p
h

 . (52) 

The vector k can be taken outside the integral in Eq. (51). It is seen that the eigenvalue 

depends in the vicinity of the Γ point quadratically on the wave vector components. Then, 

Eq. (51) is often written as  

 
2

0
1

, , : , ,
2n nE E k k x y zα β

αβ αβ
α β

µ
= + ∑k    

h
 (53) 

where 

 
2

0 0 00

1 1 2 mn nm

m n n mn m E Em

α β

αβαβ
π πδ

µ ≠
= + ∑

−
 (54) 

is an effective mass tensor.  

3.3 Kane’s Theory 

k•p theory, as discussed in Section ?? is essentially based on perturbation theory. 

A more exact approach, capable of including strong band to band interactions, is 

provided by Eq. (47). Note that the inclusion of a complete set of basis states in Eq. (47) 

is not feasible numerically. However, one can improve the k•p theory drastically if it 

includes in Eq. (47) those bands that are strongly coupled and correct this approximation 

by treating the influence of distant (energetically) bands perturbatively. This procedure 

can be made consistently if the electron bands can be divided into two groups. In the first 

group of bands there is a strong interband coupling – the number of bands in this group is 

very limited (up to 8, say). The second group of bands is only weakly interacting with the 

first set. This interaction is treated by perturbation theory. This approach is called Kane’s 
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[27,28] model and it has shown to be very predictive for the III-V compound 

semiconductors. 

Within Kane’s theory one constructs a new basis of p-symmetric atomic Bloch 

states as a linear combination of the “directed orbital” atomic Bloch states 0nu  

discussed in the previous chapter. The new basis set will consist of eigenfunctions of 

operators J and its component in the z-direction Jz. The new basis set is then denoted by 

jjm , where j = ½, 3/2 and mj = j, j-1, …, -j. This gives six subbands. These can be 

considered together with the s-symmetric conduction band. The resulting 8-band model 

gives a good description of the electronic structure of III-V semiconductors near the Γ 

point. The new basis set is given in terms of the directed orbitals shown in Table 3. In the 

literature, there are another sets of basis functions that differ from the set of functions 

given here by a unitary transformation †' ,    j jjm U jm UU I= = . 

Table 3. The atomic basis states at Γ point. The eigenvalues in the fourth column 

correspond to Eq. (). The zero point of energy has been set to the bottom of the 

conduction band. 

iu  , jj m  , JJ mψ  ( 0)iE k =   

1u  1 1
,

2 2
 i S ↑  0 Γ6 

3u  3 1
,

2 2
 2 1

)
3 6

Z X iY− ↑ + + ↑  
-E0 Γ8 

5u  3 3
,

2 2
 

1
)

2
X iY+ ↑  

-E0 Γ8 
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7u  1 1
,

2 2
 

1 1
)

3 3
X iY Z+ ↓ + ↑  

-E0 - ∆ Γ7 

2u  1 1
,

2 2
−  i S ↓  0 Γ6 

4u  3 1
,

2 2
−  2 1

)
3 6

Z X iY− ↓ − − ↑  
-E0 Γ8 

6u  3 3
,

2 2
−  

1
)

2
X iY− ↓  

-E0 Γ8 

8u  1 1
,

2 2
−  

1 1
)

3 3
X iY Z− − ↑ + ↓  

-E0 - ∆ Γ7 

 

The atomic Bloch states in Table 3 are eigenstates of the Hamiltonian H(k=0) and include 

spin-orbit interaction. Γ6 corresponds to the conduction band, Γ8 denotes the heavy-hole 

(mj = ±3/2) and Γ8 (mj = ±1/2) the light-hole band. Γ7 is known as split-off band. If we 

neglect in Eq. () the spin-orbit term that depends on the wavevector, i.e. the term 

 ( )2
0 0 0

( )
4

V
m m m c

π σ
 

⋅ − = ⋅ ×∇ 
  

k k
p

h h h
, (55) 

then the matrix presentation of the Hamiltonian 

 
2 2

0 0
( ) ( 0)

2

k
H H

m m

⋅= = + + k p
k k

h h
 (56) 

is given in Table 4 using the basis set of Table 3. Note that this Hamiltonian does not yet 

include the influence of distant bands which makes the effective mass of the valence band 

to differ from the electron rest mass. Some notations used in Table 4 are given below 
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( )
6 8

8 7

0

0 0 0

1

2
x y

x y z

k k ik

E E E

E E

i i i
P S p X S p Y S p Z

m m m

±

Γ Γ

Γ Γ

= ±

= −

∆ = −

− − −= = =

 (57) 

 We now calculate the dispersion as a function of k for the 8-band k•p theory by 

diagonalizing the Hamiltonian in Table 4. For bulk systems, or heterostructures in which 

we have confinement only in one direction, the Hamiltonian in Table 4 is easy to 

diagonalize if the z-axis of the coordinate system is taken in the direction of the 

wavevector. In this case zk k=  and accordingly 0k± = . This choice is possible since it 

can be shown that the Hamiltonian is isotropic and, therefore, the eigenvalues and 

eigenvectors depend on the magnitude of k-only. In this coordinate system the 

Hamiltonian is brought into a block form 
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Table 4. Eight band Hamiltonian H(k). 

3 3 3 3 3 31 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

2 2

0

2 2
3 1

02 2
0

2 2
3 3

02 2
0

2 2
1 1

02 2
0

2 2

, , , , , ,

2 1 1 2
0 0

2 3 3 3 3

2 1
, 0 0 0 0 0

3 2 3

, 0 0 0 0 0 0
2

1 2
, 0 0 0 0 0

3 2 3

1 2
0 0

3 3 2

z z

z

z

iS iS

k
iS P k P k P k P k P k

m

k
P k E P k

m

k
P k E

m

k
P k E P k

m

k
iS P k P k

m

+ − −

−

−

−

+ +

↑ ↓ − − −

↑ − − −

− − +

− +

− + ∆ +

↓

h
h h h h h

h
h h

h
h

h
h h

h
h h

0

2 2
3 1

02 2
0

2 2
3 3

02 2
0

2 2
1 1

02 2
0

2 1

3 3

1 2
, 0 0 0 0 0

3 3 2

, 0 0 0 0 0 0
2

2 1
, 0 0 0 0 0

3 3 2

z z

z

z

P k P k P k

k
P k P k E

m

k
P k E

m

k
P k P k E

m

−

+

+

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 
 
 − − − − + 
 
 
 − − +
 
 
 − − − + ∆ +
  

h h h

h
h h

h
h

h
h h

 

 

 4 4

4 4

0

0

H
H

H
×

×

 
=  
 

 , (58) 

where the 4×4 matrix is given by 

2 2

0

2 2

0
0

4 4 2 2

0
0

2 2

0
0

2 1
0

2 3 3

2
0 0

3 2

0 0 0
2

1
0 0

3 2

z z

z

z

k
P k P k

m

k
P k E

m
H

k
E

m

k
P k E

m

×

 
− 

 
 
 − − +
 

=  
 − + 
 
 

− − ∆ + 
 

h
h h

h
h

h

h
h

  , (59) 
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and where for bulk case one can assume zk k= . The eigenvalues (doubly degenerate) are 

obtained by finding the roots of the determinant equation 

 ( ) 0H E− =k I .  (60) 

Denoting 
2 2

0
( ) ( )

2

k
E

m
λ = −k k

h
,  the eigenvalues, i.e. the roots of Eq. () are 

 [ ][ ]
0

2 2 2
0 0 0

( )

2
( ) ( ) ( ) ( )

3

E

E E k P E

λ

λ λ λ λ

= −
∆ + + + ∆ = + +  

k

k k k kh
 . (61) 

This last equation corresponds to the original formulation of Kane [27,28]. In his 

derivation he uses a different basis set corresponding to eigenfunctions of operators 

2 2, , ,z zL L S S , but the eigenvalues and dispersion relations are equal since the basis sets 

are related by a unitary transformation. From the first equation, one obtains the dispersion 

for the HH-band: 

 
2 2

0
0

1 1
;    

2hh
hh hh

k
E E

m m m
= − − =h

 (62) 

Note that the effective hole mass is still equal to the bare electron mass. From the second 

equation we obtain the other three dispersion relations as follows. We assume that the 

coefficient 2 2 2k Ph  is small. We then obtain the lowest order solution by setting this term 

equal to zero and obtain (of course) the original band edge positions 

 
6 8 7

0 0 0
0 00,   ,    lh E Eλ λ λΓ Γ Γ= = − = − − ∆  . (63) 

The zero of the energy scale is taken to be at the conduction band edge. Now, the first 

order solution is obtained by each band by inserting the zero order solution on the RHS of 

Eq. () and also in the left hand side in all other terms except for one becoming zero if the 
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substitution is made. The first order eigenvalue is then obtained analytically. For 

example, for the conduction band one obtains 

 [ ][ ]

[ ][ ]

6 6 6 6

6

6

1 0 0 2 2 2 0
0 0 0

1 2 2 2
0 0 0

0
1 2 2 2

0 0

2
( ) ( ) ( ) ( )

3

2
( )

3

2
3

( )

E E k P E

E E k P E

E
k P

E E

λ λ λ λ

λ

λ

Γ Γ Γ Γ

Γ

Γ

∆    + + + ∆ = + + ⇔      

∆ + ∆ = + ⇒  

∆ +  =
+ ∆

k k k k

k

k

h

h

h

 (64) 

i.e. 

 [ ][ ] ( )6

0 2 2 2 2 2 2
2 2 2

0 0 0 0 0 0

2
1 4 23

( )
2 2 3 3

E
k k P P

E k P
E E m m E EΓ

∆ +    = + = + +  + ∆ + ∆ 
k

h h
h , (65) 

which means that the effective mass of the electrons in the vicinity of the conduction 

band edge is 

 ( )
2 2

0 0 0

1 1 4 2

3 3c

P P

m m E E
= + +

+ ∆
 . (66) 

For the light hole and the split-off bands, one obtains by similar procedure 

 

( )

2 2 2

0 0

2 2 2

0 0

1 1 4
;   

2 3

1 1 2
;   

2 3

lh
lh lh

so
lh so

k P
E E

m m m E

k P
E E

m m m E

= − − = −

= − − ∆ − = −
+ ∆

h

h
 (67) 

Note that because of the relative magnitudes of the matrix elements of the dipole 

operator, band edge energies and spin-orbit splitting conduction band obtains a positive 

effective mass, whereas the light-hole and split-off bands have negative effective electron 

mass. Kane [27,28] used this method to describe the energy band-structure in a p-type 

germanium and silicon, and indium antimonide.  
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3.4.  Coupling With Distant Bands 

To describe the coupling with distant bands, we consider the wave equation 

 0( )H W Eψ ψ+ = , (68) 

where 

 
2 2

0 02

k
W

m m
= ⋅ +k p

h h
 . (69) 

We assume that the eigenvalues lE  corresponding to eigenstates  1,2,...,8l l =  of the 

Hamiltonian 0H  are close to each others on the energy scale. These are the 8 bands 

considered in Kane’s model. These eigenstates are strongly coupled by the operator W. 

We assume that there is another set of eigenstates ν  of 0H  only weakly coupled by W. 

We now calculate the correction to the 8 lowest eigenvalues of 0H  caused by the distant 

bands. Let ψ  be solution to Eq. () including this correction, i.e. 

 l
l

c l cν
ν

ψ ν= +∑ ∑ . (70) 

Inserting Eq. (70) into Eq. (69), we obtain 

( )

( )

0

0

l l lm
l

l
l

c E E m W l c m W

c E E W c W l

ν
ν

ν ν µν
ν

δ ν

δ µ ν µ

 − + + =∑ ∑ 

 − + + =∑ ∑ 

 (71) 

Since the coupling to the distant bands ν  is weak, one can conclude that if ψ  is one of 

the lowest 8 eigenvalues, the relative magnitudes of the expansion coefficients are: 

1lc ≅  and 1cν << . The second of the above equations then gives 
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1

l
l

c c W l
E Eν

ν
ν≅ ∑

−
 . (72) 

Inserting this into the first of Eqs. (71), we obtain 

( ) 0l l lm
l

c E E m W l m W W l
E Eν ν

ν ν
δ

 
− + + =∑ ∑ − 

 . (73) 

It is obvious that the influence of the distant bands can be taken into account by 

replacement  

 W W W W W
E Eν ν

ν ν
→ = + ∑

−
%  . (74) 

It can be shown that the Hamiltonian of distant band interaction W W−%  is given by Table 

5, where the following notation has been used 
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, (75) 

where 
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 . (76) 

Table 5. Hamiltonian of the distant band interaction. 

( )

3 3 3 3 3 31 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2

2 2

0

2 2
3 1
2 2

0

2 2
3 3
2 2

0

2 2
1 1
2 2

0

2 2

0

, , , , , ,

1 1
0 0 0 0 0 0 0

2

1 3
, 0 * ( ) 0 0

2 22

, 0 0 0 2
2 2

1 1 3
, 0 ( ) 0 2 0

2 2 22 2

1 1
0 0 0 0 0 0

2

c

c

iS iS

k
iS

m m

k
G iH G F I i H

m

k i
iH F H I I

m

i k
G F H F G i H IW W m

k
iS

m m

↑ ↓ − − −

 
↑ − 

 

− − −

− − − −

− − − + − −− =

 
↓ − 

 

h

h

h

h
%

h

( )

2 2
3 1
2 2

0

2 2
3 3
2 2

0

2 2
1 1
2 2

0

0

3 1
, 0 0 * * 0 ( )

2 2 2

, 0 * 0 2 * 0 * *
2 2

3 1 1
, 0 * 2 * 0 0 ( )

2 2 22 2

k
I i H G iH G F

m

k i
I I iH F H

m

i k
i H I G F H F G

m

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− − − − − − 
 
 
 − − −
 
 
 − − − − − + − 
 

h

h

h

 

3.5 The Luttinger-Kohn Hamiltonian 

 In the Luttinger-Kohn approximation [29] it is assumed that 0E  and ∆ are large 

enough, so that coupling of the 8Γ  bands with the split-off band is weak. This allows one 

to derive 4×4 Hamiltonian submatrix. The derivation consists of unitary transformation 

from the basis set , ,X Y Z  multiplied by the spin functions ↑↓  parts to the jj  – 
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coupled subspace 3/ 2,3 / 2 , 3/ 2, 3 / 2−  (HH-states) and 3/ 2,1/ 2 , 3 / 2, 1/ 2−  (LH-

states).  The Hamiltonian is 

0

0

0

0

3 3 3 1 3 1 3 3
, , , ,

2 2 2 2 2 2 2 2

3 3
, 0

2 2

3 1
, * 0

2 2

3 1
, * 0

2 2

3 3
, 0 * *

2 2

F E H I

H H G E I

I G E H

I H F E

− −

− −

= −

− − −

− −

 . (77) 

The eigenvalues of the above Hamiltonian are obtained from determinant equation 

0E− =H I , which gives 
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 (78) 

If one assumes that ||zk -axis, it arrives at 

 ( )
8

2
0( )E k E A B kΓ = − + ±  . (79) 

Inserting matrix elements A and B the HH-LH dispersion is given by 
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0 00
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1 1 2 2 2
;    

2 * *

z m

m m

p u
k

E E
m m m E Em ≠Γ
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+
h

 . (80) 

The last term is a correction coming from the coupling with the distant bands. This gives 

the HH-band a negative electron effective mass (and a positive hole effective mass). 
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 The Hamiltonian given in Eq. (77) can be written in a more familiar form in terms 

of Luttinger parameters. First, the Luttinger parameters 1 2 3, ,γ γ γ  are written in terms of 

L, M, N, R, S, and T. The matrix elements of the HH-LH Hamiltonian are then given by 
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 (81) 

 

4. Applications of k•p to Quasi-2D Electron and Hole Systems 

4.1 Heterostructure Devices 

Development of Molecular Beam Epitaxy [ 30 ] has been pushed by device 

technology to achieve structures with atomic layer dimensions and this has led to an 

entirely new area of condensed matter physics and investigation of structures exhibiting 

strong quantum size effects. MBE has played a key role in the discovery of phenomena 

like the two dimensional electron and hole gases [31], quantum Hall effect [32], and new 

structures like quantum wires [33], quantum dots [34], etc. The continued miniaturization 

of solid state devices is leading to the point where quantization-induced phenomena 

become more and more important. These phenomena have shown that the role of material 

purity, native defects and interface quality are very critical to the device performance. 

Modulation doping is employed to achieve adequate carrier densities in one region of the 
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device which is physically separated from the source of the carriers, the ionized 

impurities. 

The low temperature mobility of modulation doped GaAs/AlGaAs structures is a 

good measure of the GaAs/AlGaAs material quality. This depends very strongly on the 

epitaxial structure, particularly the placement and quantity of dopant impurities. The two 

dimensional electron gas (2DEG) that exists at the interface between GaAs and the wider 

band gap AlGaAs exhibits a very high mobility at low temperatures. Even at room 

temperatures, the mobility is larger than that of bulk GaAs. Two factors contribute to this 

higher mobility, both arising from the selective doping of AlGaAs buffer layers rather 

than the GaAs layers in which the carriers reside. The first is the natural separation 

between the donor atoms in the AlGaAs and the electrons in the GaAs. The second is the 

inclusion of an undoped AlGaAs spacer layer in the structure. Such structures are quite 

complicated but can be easily fabricated using MBE techniques. A typical heterostructure 

begins with the bulk GaAs wafer upon which a GaAs buffer layer or superlattice is 

grown. The latter is used to act as a barrier to the out-diffusion of impurities and defects 

from the substrate. It also consists of a GaAs cap layer and alternating layers of AlGaAs 

and GaAs. The common practice is to use a doping for the AlGaAs layers in the active 

region but nowadays undoped AlGaAs layers are used and a delta doped layer is 

included. This delta doped layer along with the growth of superlattices restricts the 

formation of defects, known as D–X centers, to a minimum. There are two important 

AlGaAs layers on either side of the δ–doped layer and they are called buffer and spacer 

layer, respectively. The spacer layer is closer to the GaAs quantum well and is of high 

purity to prevent scattering of the channel carriers by the ionized impurities. A usual 
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practice is to use undoped AlGaAs layers to have very good confinement of the charge 

carriers in the well. Other device parameters that have to be considered are the 

composition of the Aluminum in AlGaAs. There is a compromise in the value chosen for 

x: if x is smaller than 0.2 then the band discontinuity will be too small to properly confine 

carriers in the well; if x is too large then defects, termed as D-X centers, tend to appear in 

AlGaAs. To overcome this problem Aluminum content is limited to about 20% and other 

variations like δ–doping layer and growth of superlattices are introduced into the MBE 

techniques. 

A prototypical GaAs/AlGaAs heterostructure used, for example, for quantum 

wires and dots formation that utilize the split-gate technique, is shown in Figure 7. The 

zero-temperature conduction band profile along the growth direction is shown on the 

right panel of Figure 7. One can see that the electrons are localized in the quantum-well 

region, and the presence of this quantization can, in principle, lead to the modification of 

the electron and hole effective masses. 
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Figure 7. Heterostructure used in the fabrication of the spin filter realized with quantum 

point contacts at Arizona State University [35,36]. 
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4.1 A Study of Spin-Resolved Band Structure in GaAs Quantum Wells 

as Applied to Spintronics 

Today, the research in spintronics – the field of semiconductor electronics based 

upon exploiting the quantum mechanical property of electron spin as an information 

carrying entity – owes its existence, in general, to two primary factors. The first is 

theoretical: the spin component of the electron’s wave function can retain its form (i.e., 

it’s orientation or, if referring to an ensemble of electrons, the coherence) in 

semiconductor transport for much longer times than can the spatial components. In fact, 

the spin relaxation time sτ  can be on the order of nanoseconds, as opposed to 

femtoseconds for the spatial momentum relaxation time [37,38]. The second factor is 

technological: Improvements in lithography and the continuing progress in developing 

efficient spin filter injection/detection mechanisms that polarize (or detect polarized) 

electrons in the 2DEG gas of semiconductor heterostructures for spintronic devices by 

various means, other than by applying a cumbersome external magnetic field to lift the 

spin degeneracy [39,40], have prompted the race to develop novel devices such as the 

spin transistor (SPINFET). The starting point for understanding spin injection/detection, 

the spin-flip scattering mechanisms and their relative impact on transport is, of course, 

the determination of an accurate spin-resolved band structure.  

This section is organized as follows. We first present an application of the multi-

band k⋅⋅⋅⋅p to calculations of a band-structure in quantum well, in the absence of stress, 

strain, or magnetic fields. The effect of bulk inversion asymmetry, a source of spin-

splitting in the bands, is then introduced in the model. Furthermore, the k⋅⋅⋅⋅p model, 

Ddiscussed in section ?? and developed within our group is enhanced to account for spin 
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splitting in the conduction band due to any structural inversion asymmetry (SIA) that 

may exist. The model, incorporating SIA effects, is then compared to a similar model, 

recently published in the literature. Current work includes investigation of the energy 

level structure in the spin filter that will be realized at Arizona State University using the 

heterostructure shown in Figure 7.  

 General Characteristics of the Solver 

 The Fermi energy of the electrons involved in the transport through our QPC is on 

the order of 10 meV. This energy is low enough such that a band structure calculation 

accurate only around a point of high symmetry in the Brillouin zone (  pointΓ ) is 

sufficient. For this situation, the k⋅⋅⋅⋅p method of calculating band structure, explained in 

details in Section ??, is applicable.  

 Eppenga et al. [41], using the Kane basis set and including spin-orbit coupling 

and remote band effects via Löwdin perturbation theory [42], arrive at the following 

Hamiltonian 

 

*

21

*

2

2 2

1

0 2 02 3

0 32
  

2 3 0 2

0 2 0

    2   3

          2
                                                  

       

     

H  

   

EL z z

LH

SO

HH

EL z z

LH

SO

HH

P PE P P P

P G GE G G

E G P G G

E G G

E P P P

E G G

E G

E

− −+

+ −+

+ + −

−

−

−

− −−

− −

− −

− −

− −

−







=





















 


 . (82) 

 

The “empty spaces” in Eq. (82) denote Hermitian conjugates. The diagonal matrix 

elements are 
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where gE  is the bandgap and ∆  is the spin-orbit split-off energy. The1γ , 2γ  and s  

parameters are effective mass parameters that modify the free-electron term. Also, 
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The off-diagonal terms are given as, 
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In these terms,
2

 

 s z

unit cell

dr
m z

ρ φ φ∗ ∂= −
∂∫

h
 and accounts for the coupling of the conduction 

band s-states of the Kane basis with the valence band z-state. Terms containing 3γ  result 

in an anisotropic band structure near the  pointΓ  if 2 3γ γ≠ . The parameter β  is due to 

the bulk inversion asymmetry (BIA) and causes spin-splitting of the bands. 

 Also known as Dresselhaus splitting [10], BIA induced spin-splitting occurs in 

zinc-blende semiconductors due to the fact that two different kinds of atoms (e.g., Ga and 

As, Ga and Sb, etc...) exist, resulting in asymmetrical wave functions about an axis of 

symmetry (e.g., (100) axis). This means that while Kramer’s theorem, ( ) ( )E k E k↑ = − ↓  
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is satisfied for all values of k , the situation away from k = 0 is that  ( ) ( )E k E k↑ ≠ ↓ . In 

fact, spin-splitting of the conduction band (6Γ  band) due to BIA is proportional to k3 for 

small values of k in bulk zinc-blende semiconductors. However, in 2DEG systems such 

as heterostructures, a linear dependence on k occurs too. The valence bands exhibit linear 

BIA splitting in both the bulk and 2DEG cases. Thorough discussions of the k-

dependence of BIA spin-splitting can be found in Zawadzki and Pfeffer [43] and Silsbee 

[44].  

 Finally, note that the matrix operator of Eq. (82)  does not include the effects of 

stress and strain or the influence of a magnetic field. Of course, these effects undoubtedly 

will modify the k-dependence on spin-splitting. However, it must be mentioned that the 

Kane model inclusive of these effects has been derived by several researchers, notably 

Trebin et al. [45].  

 

 Quantum Well Structure  

 To test the applicability of the Kane approach, Eq. (82) has been applied to the 

symmetrical quantum well shown in Figure 8.    
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Figure 8.  Symmetrical Quantum Well. Though not shown here, the valence split off band  

also exhibits a band offset. The dimensions of the well are chosen so as to be able to 

compare to the tight-binding model results of Chang and Schulman [46].  

 

To start, one applies the operator p̂ i→ − ∇h to all kz terms (denoted by the ~) in 

the eigenvalue equation with matrix operator given in Eq. (82). This operation is done to 

the kz terms only, since quantization is assumed to be along the z-direction. In doing this, 

it is convenient to note that the resultant matrix with the matrix operator given explicitly 

included then takes the form,   
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where the F and B terms denote coefficients to 2nd and 1st order partial derivatives w.r.t. 

z, respectively. The C terms denote potential offsets, and the D terms indicate all other 

terms not operated on by the momentum operator. Keep in mind that all terms B, C, D, 

and F are actually z–dependent functions, though not denoted as such to ease the 

notation.  

 To ensure Hermiticity of the resulting matrix at the heterostructure interfaces, I 

use following discretization scheme as noted in Eppenga et al. [17]: 
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Equations (13) and (14) yield 
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It was later noticed the approximations of equation (15) or (16) did not degrade results, so 

I used them to transform the matrix from the bulk to the z-quantized situation. Thus,  

 

2
1 1

2 2

( ) ( ) 2 ( )
( )     z z zF z F z F z

F z
z z
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∂ ∆

          (17) 

1 1( )   ( )
2

z zB z B z
z z

χ χχ + −−∂ →
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             (18) 

At this point, a word of caution is in order. Applying equations (13) and (14) is known as 

using “symmetrizing” boundary conditions. Burt [13] has argued that this approach is 

technically incorrect for abrupt interfaces. However, as observed in the simulations of 

Meney et al. [23], for the energy ranges of interest (less than 50meV) the error is 

miniscule, especially when using an 8-band model.  

 Applying (17) and (18) to (10) results in a matrix of the form shown in Figure 3.
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  Figure 3: General form of the expanded 8-band Kane Matrix. Each point in real-space, along the  

  quantized z-axis corresponds to an 8-row block in this matrix. 

 To further clarify the discretization scheme, figure 4 shows what the scheme 

would be for a simple 2-band matrix evaluated at 3 points in real-space [(z - 1), z, (z + 1) 

] along the z axis. Of course, all the coefficients (B, C, D, F) are z-dependent.  

Also, note that the C terms only appear in the diagonal, as they are the potential offsets 

inclusive in the 0( )nE k  term of (6).  
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The matrix denoted in Figure 3 was coded in FORTRAN and evaluated using the LAPACK 

ZHEEVX eigenvalue/eigenvector solver subroutine. The parameters 1γ , 2γ , 3γ , s  and the 

parameterized value of ρ  of (11a,c) were chosen in accordance with Table II of Eppenga et al. 

[17], as shown below in Figure 5. The parameterβ  was chosen to be ~17 eV-A°  in the GaAs 

well and ~12 eV-A°  in the AlGaAs cladding layers, in accordance with another Eppenga and 

Schuurmans paper [24]. Additionally, a mesh spacing z∆  of 1nm was used.  

 

 

  Figure 5. k.p parameters used in this work (reproduced from Table II of [17]). 

 

 The results, depicted in Figure 6a for the valence bands, are in good agreement with the 

Chang and Schulman tight binding calculation of Figure 6b [22], which requires several more 

adjustable fitting parameters other than1γ , 2γ , 3γ , s  and ρ . The labels of the bands (HH1, LH1, 

etc...) of Fig. 6b also apply to Fig. 6a. and define the predominant character of the band at k = 0. 

This was proven by comparing the relative amplitudes of the jχ  envelope functions (where j 

signifies the HH, LH, etc… band index) in equation (9) for the various sub-bands at k = 0. In 

producing Fig. 6a the band offset depicted in figure 2 was chosen to be split 85/15 % over the 

conduction/ valence bands, to be consistent with [17] and [22].  However, experimental studies 

have since indicated that a 65/35 % split is more realistic.  
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 Figure 6a (top): valence band dispersion in 19.2 nm quantum well, as calculated with 8-band k.p 

method. Figure 6b (bottom): Chang & Schulman tight-binding results. The labels (HH1, HH2, 

etc…) apply to Figure 6a also, as explained in the text.   
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Although Figure 6 indicates that the 8-band k.p model is useful for accurately 

describing band structure in the vicinity of a point of symmetry in the Brillouin zone, the 

model does of course have severe limitations. Indeed, it was found that in using (11) to 

calculate the bulk band structure of GaAs, the conduction band suddenly curves down 

and goes negative at about 10% of the path length  along 111 (Γ  � L). Thus, at large 

real values of k, the bandgap can “disappear” and “spurious” solutions to the eigenvalue 

problem exist [23]. Therefore, at large values of k the 8-band k.p approach is not 

appropriate. Other methods such as tight-binding methods must be used. Higher order k.p 

models, such as the 24-band k.p model recently reported by Radhia et al. [25], could also 

possibly be used, though they would be computationally inefficient and computer-

memory intensive.  

III.  Present Research - Inclusion of SIA Effects into the 8-band Model  

A.  Theory 

 Since the results of Figure 6 indicate that the 8-band solver developed in section II is 

accurate for low values of k (i.e., the energy range of interest spintronic devices operated at 

cryogenic temperatures), the solver is currently being used to investigate SIA effects in quantum 

GaAs/AlGaAs quantum wells, by modifying the Hamiltonian matrix operator of (11) to include 

SIA terms.  

 As previously mentioned, SIA is of great interest in spintronics, since the promise of 

many proposed spintronic devices (refs.[1] - [5] ) relies on the principle of being able to 

modulate the SIA via application of an external electric field. The “Rashba Effect” [26] predicts 

that an electric field applied perpendicular to the plane of a 2DEG will cause SIA. In turn, this 
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electric field will then relativistically [15, 26] induce an effective magnetic field in the plane of 

the 2DEG, effectively lifting the spin-degeneracy of the charge carriers. 

 Aside from external electric fields, SIA can in principle be caused by anything that 

results in an asymmetrical quantum well. Effectively, this means that the penetration of the wave 

function in the cladding layers is not identical to both sides of the well. As reported by Silsbee 

[20], this can occur during MBE growth. For example, if one attempts to grow a heterostructure 

formed by a cation and anion of one kind of atom (denoted by C1 and A1 respectively) and a 

cation and anion of another type of atom (C2 and A2), one would desire the following growth 

pattern: 

…A1-C1-A1-C1-A1-C1-A1=C2-A2-C2-A2-C2-A2-C2=A1-C1-A1-C1-A1-C1… , 

where the ‘=’ sign indicates the heterostructure interface. Typically though MBE growth yields 

…A1-C1-A1-C1-A1-C1-A1=C2-A2-C2-A2-C2-A2-C2-A2=A1-C1-A1-C1-A1-C1… . 

Note that the 2nd structure is asymmetrical.  

 The general form of the SIA term to be added to (11) to account for SIA splitting of the 

conduction band is 

1 ˆ( )Hso k zα σ= ⋅ ×                (19) 

where σ  Pauli spin matrix, as discussed in Section II and in ref. [15].  

The term 1α  is a coefficient, typically called the “Rashba Coefficient”. In fact, the precise nature 

of this term has been controversial. Until recently many people believed that this term is 

proportional to the electric field of the conduction band (i.e., - V∇ ), in which case (19) has an 

obvious similarity and/or connection to eqn. (8) which describes spin-orbit coupling. However, 

Zawadzki and Pfeffer [19] point out that the average electric field in a bound state of a quantum 

well is zero. Interestingly, they report that 1α  has a dependence on the valence band offsets at the 
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interfaces. I am presently studying this matter. Nevertheless, the value of 1α  has been 

empirically estimated for various structures, one of which I am investigating, as will be discussed 

later in this section.  

 Furthermore, Winkler [27] has stated that the SIA splitting of the HH and LH valence 

bands ( 8Γ bands) should take a form similar to (8), 

8 2 3ˆ ˆ( ) ' ( )vH J k z J k zα α= ⋅ × + ⋅ × .                        (20) 

Since the basis set considered is the same as the Kane basis of earlier, in (20) J  is defined as the 

angular momentum matrix operator for particles of momentum 3/ 2j =  (ref. [15,28]),  and 'J  is 

defined as 3J  (according to [28], since J  and 3J  are linearly independent  any 4 x 4 matrix 

such as equation (20) can be represented as an expansion of J  and 3J ) . 

 Most models of SIA induced spin-splitting include only a 2 x 2 term (i.e., equation (19). 

However, in this study, both equations (19) and (20)  are added to the Hamiltonian matrix 

operator (11).  Also, I have decided to add a matrix operator for the split-off hole 7Γ  bands. In 

doing this, I assume that it has the same form as equation (19) (using a new coefficient 4α )since 

the split-off band is also characterized by 1/ 2J =   .  

 All the above SIA terms are represented in the matrix of Figure 7, which are then added 

to the Hamiltonian matrix operator (11).  (The .PDF version of this report color-codes the terms 

for each coefficient in Figure 7.) . Currently, I am trying to determine if the blank spaces in the 

matrix should actually correspond to some type of coupling terms.  
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B. Application to an Asymmetric Quantum Well 

 Using an 8-band solver apparently similar to the one derived in this report, Cartioxa et al. 

[29] have recently investigated the relative contributions of BIA and SIA terms to conduction 

band splitting in an asymmetrical quantum well, as depicted in Figure 8a. In this structure each 

layer is ~ 3.0 nm thick. In Figure 8b they show the BIA and SIA splitting for a particular 

magnitude of k
�
 ( 0.01(2 )k aπ=

�
, a is the lattice spacing) as this vector is rotated through the kx 

ky plane.  

  To test my SIA modeling, I have attempted to reproduce their results. As indicated in 

Figure 8C, my results show good agreement with Cartioxa et al when 2,3α  = 4α = 0 (I have not 

studied the case when these other coefficients are non-zero.) However, in order to match their 

results, I had to calculate the modified Luttinger parameters (as in Figure 5), which they did not 

provide, for AlSb, InAs, and GaSb using data from [9] and [17]. However, the calculated values 

may not be that accurate. Consequently, the values chosen for the BIA and SIA coefficients (37.5 

eV-A° , 100.5 eV-A° ) were 2.5 times the values Carioxa et al. quoted.  

  As expected, Figure 8(b) and 8(c) indicate that the SIA splitting of the conduction band is 

isotropic (independent of the component of the vector, kx or ky). The BIA splitting is greater 

along 110 (kx = ky) than 100 (ky= 0) due to the differences in the HH effective mass for these two 

directions in k-space. 

  In the near future,  the k-dependence of SIA on the valence bands will be investigated. 

As noted in Zawadzki and Pfeffer [19], SIA is expected to be linear in k for LH bands and 

proportional to k3 for HH bands.  
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  C) 

 

  Figure 8: (a) Asymmetrical QW of Cartioxa et al [29]. (b) Cartioxa et al. spin splitting for well  

  of (a). (c) My results, using estimated values of the modified Luttinger parameters.  
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4.2 k⋅⋅⋅⋅p for Nano-Scale p-Channel MOSFET Devices 

Electron transport in Si inversion layers has been the primary subject of research 

for many years now, but hole transport has been relegated to the background mainly due 

to the complex valence band-structure in Si. Hole transport is affected by the warping and 

anisotropy of the valence bands and the band-structure cannot be approximated with an 

effective mass picture or with an analytical band model. The advent of alternate device 

structures [47,48,49] aimed at boosting the speed and density of VLSI circuits however, 

seems to have revived interest. The important alternate device technologies are buried 

channel strained SiGe p-channel MOSFETs and surface channel strained Si. 

In this section we describe a new way of incorporating band-structure and 

quantum effects on hole transport in conventional Si p-channel MOSFETs. This is 

achieved by coupling a 2D Poisson–1D discretized 6×6 k⋅⋅⋅⋅p Hamiltonian solver 

(discussed in Section ??, for the case when the conduction band contribution is neglected) 

self-consistently to the Monte Carlo transport kernel (explained in more details in 

Section ??). At present our method only includes phonon scattering in the full band 

model. This method is generic and can easily be extended to model strained layer 

MOSFETs by incorporating an additional strain Hamiltonian into the band-structure 

kernel. 

 The band-structure is calculated using the k⋅⋅⋅⋅p method, the Hamiltonian for which 

is given in Eq. (), and is repeated here for completeness: 
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 0
= + ( )

0
V z

 
 
  

k.p

so
k.p

H
H H + I

H
, (87) 

where Hk.p and Hso are the 6×6 k⋅⋅⋅⋅p and the spin-orbit Hamiltonians respectively, I is a 

6×6 identity matrix, V(z) is the confining potential along the device depth. Replacing the 

vector kz with its operator notation as kz=-i∂/∂z, and using a finite difference 

discretization, Eq. (82) can be recast into an eigenvalue equation for the eigenenergies in 

the xy-plane, for different values of the in-plane K -vector, K ||(kx,ky).The solution of the 

eigenvalue problem involves the diagonalization of a tridiagonal block matrix whose rank 

is given by 6×NZ, where NZ is the number of mesh points along the depth direction. For 

the 3D (bulk) carriers in the source and drain, we only have the first two terms of Eq. (82). 

This 6×6 Hamiltonian can easily be diagonalized to give the eigenvalues of 3D carriers at 

(kx, ky, kz). 

To include carrier scattering within the transport kernel, the density of states of 

the system (2D and 3D) are required. For the 2D case, we tabulate the in-plane K-  vector, 

K ||, as a function of carrier energy (ε2d), band (ν) and subband (n) indices, and the in-

plane azimuth angle(φ). For the 3D case, the K-vector, K 3D is tabulated as a function of 

carrier energy (ε3d), band index (ν), and the azimuth (φ) and elevation (θ) angles. In order 

to set up the inverse problem, the discretized eigenvalue Eq. (82) for the 2D system can 

be recast into a eigenvalue equation for |K ||| [50] as shown by the following equation, 

where Dn operates on |K |||
n. 

 K K
-1 -1 (1) (1)
2 0 2 1 K K

ψ ψ
=K

- .[ - ] - . ψ ψE

     
     

    

0 I

D D I D D
            (88) 

Since εν
n(kx,ky) is quadratic in |K |||, the problem involves diagonalizing a matrix whose 

rank is twice as large as that of the discretized k ⋅⋅⋅⋅p Hamiltonian, i.e. 12×NZ. In the 3D 
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case, using a similar technique, one can show that the problem involves diagonalizing a 

matrix whose rank is twice that of the k⋅⋅⋅⋅p Hamiltonian, i.e. 12. Thus, for the 3D case, one 

can tabulate the values initially and these can be used throughout the simulation. The 

computational complexity for the 2D case led us to make the following simplifying 

assumptions. 

Using a sufficiently high vertical electric field ~5MV/cm, a triangular test-

potential was generated and used to tabulate the dispersions and density of states (DOS) 

of the ground state subbands in each band (heavy-hole HH, light-hole LH and split off- 

SO). It was then assumed that for the case of a real confining potential in the device, the 

dispersions in each subband for a particular band would be given by the tabulated 

(triangular-well) dispersion of the ground state subband of the corresponding band, thus 

allowing us to capture the basic features of subband anisotropy, warping and 

nonparabolicity. The only effect of the ‘real’ confining potential in the device would be 

the translations of the dispersions on the energy axis by the subband energies at the Γ 

point.  

 n 0 0 n ε ( , ) [ε ( , ) ε (0,0)] ε (0,0)x y x yk k k kν ν ν ν≈ − +  .      (89) 

For the inverse problem, a similar approach is used. The triangular test potential is used 

in the inverse solver, in order to tabulate the in-plane K -vectors K ||
n,ν(ε2d,φ) for a set of 

chosen (ε2D,φ).  Having so tabulated in-plane K -vectors for the lowest subband in each 

band, we assume that the same dispersion holds also when employing the actual device 

potential for all the subbands of the given band, i.e. 
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 n, 0,
|| 2D || 2DK (ε , ) K (ε , )ν νφ φ≈  . (90) 

The Monte Carlo particle based simulator handles the transport of holes through 

the device and is described in much more details in Section ??. Having calculated the 

hole band-structure in the contacts and the active device region i.e. under the gate, the 

quantum mechanical hole density in the channel, is calculated self consistently with the 

Poisson equation and the 2D band-structure code. Holes are then initialized in real space 

based on the local carrier density and their energy is initialized by assuming a thermal 

distribution. The present version of our simulator accounts only for phonon scattering 

within the isotropic approximation, but uses overlap factors calculated from the actual 

eigenfunctions in each subband. As the carriers drift under the influence of the electric 

field due to the applied bias, the confining potential changes and this in turn changes the 

eigenenergies and the eigenfunctions. As a result, the scattering rates must be updated 

frequently during the simulation. Within the scope of the current model we have assumed 

the holes to be quasi 3D particles in the source and drain regions and have used 

appropriate models to treat these boundary conditions effectively. When converting a 

bulk (3D) Monte Carlo particle into a low-dimensionality (2D) particle occupying a 

subband in the inversion layer, the difference between the carrier energy ε3D and the in-

plane kinetic energy ε2D gives the subband energy εν
n. The carrier subband is then 

determined by choosing a subband with the minimum error in subband energy and εν
n, 

the calculated energy. In the opposite case of converting a 2D-particle into a bulk carrier, 

the 3D carrier energy is given by ε3D=ε2D+εν
n. By scanning the elevation angleθ from the 

tabulated values of the 3D K -vector and preserving the in plane azimuth φ, the K 3D vector 
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which minimizes the error in the magnitude of the in-plane K 2D vector is chosen as the 

3D carrier momentum of the bulk particle. 

The isosurfaces of the lowest Heavy, Light and Split off subbands, for the case of 

the triangular test potential are shown in Figure 9. Note the strong warping of the heavy 

hole band when compared with the fairly regular shapes for the light hole and the split off 

bands which makes it extremely difficult for analytical band models to describe the 

valence band-structure accurately. The hole-density of states is determined by performing 

a surface integral over these isosurfaces and these are then used to determine the carrier 

scattering rates in the channel. 

 

       

Figure 9. Isosurfaces of the lowest lying HH, LH and SO subbands on a (001) oriented 

substrate.  

The density of states for the confined carriers is shown in Figure 10. The 

deviation of the density of states obtained by a full band calculation from a regular step- 

like profile expected out of an effective-mass type approximation is clearly seen in the 

case of the light hole and split off bands, whereas the heavy hole density of states looks 

more like a step function. 
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Figure 10. Density of States for channel (triangular test potential) and bulk (3D) carriers 

respectively from k⋅⋅⋅⋅p calculations. 

The output characteristics of a 25 nm p-channel conventional Si MOSFET are 

shown in Figure 11. Significant DIBL is seen in the output characteristics in this case. 

Only phonon scattering (acoustic and optical phonons) are included in this calculation. 

An equivalent effective mass two band (Heavy and Light Hole bands) model with similar 

scattering mechanisms included, underestimates the current by about 14%. Thus, it is 

clear that the effective mass approximations is not reliable and, therefore, band-structure 

calculations are required to accurately predict the output current under high field 

transport conditions in nano-scale MOSFETs,  in particular the p-channel ones. 
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Figure 11. Output characteristics of a 25 nm p-channel Si MOSFET calculated using the 

full band and the effective mass model. 
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