
4. TIME-INDEPENDENT SCHRÖDINGER EQUATION
The solution of the TDSE is a rather formidable problem even in 1D.  The underlying
problem is not just that it is a partial differential equation of second order in x and first
order in t, but that we must consider both of these variables at once.  As a consequence,
the space and time dependence of the wavefunction may be very complicated.  We have
seen one example of this complexity before: The Gaussian free-particle state function is a
combination of spatial and time-dependent factors.

One way to solve the TDSE is to seek solutions that have a particularly simple form, i.e.
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These product functions are called separable solutions of the partial differential equation
(PDE).  In Quantum Mechanics, they are called stationary-state wavefunctions.  One can
find these stationary-state wavefunctions using a method called separation of variables.
For example, substituting the above expression for ),( txψ  into the TDSE, one gets:
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The last equation is almost separable, since, in general, the potential energy can depend
on both x and t.  If we assume that )(),( xVtxV = , i.e. the potential energy is time-
independent, then the LHS is only a function of x and the RHS is only a function of t.
Therefore, the two sides can be equal if they are constant.  This gives us two equations:
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Notes:

Ø The fact that we can obtain these two equations at all, provided that V does not de-
pend on time, proves that stationary state wavefunctions exist for systems with a time-
independent potential energy.

Ø A system whose potential energy is time-independent is said to be conservative.
Hence, stationary states exist for conservative systems.

Ø The solution of the second equation [for )(tξ ] is very simple, and is given by:
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The Born interpretation of ),( txψ  provides a clue to the physical meaning of the
separation constant α.  The wavefunction of a stationary state oscillates at a frequency

h/α=ω .  From the de Broglie-Einstein relation, one has that α=ω= hE .  Hence,
we can represent α as the total energy of the particle in the state represented with this
wavefunction, i.e.
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Ø The first equation then becomes:
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This is the time-independent SE (TISE), which is an equation of a very special form.
There is a differential operator representing the total energy of the system, which op-
erates on the unknown function )(xEψ  to produce the same function )(xEψ  multi-
plied by a parameter E.  Mathematicians call an equation of this form an eigenvalue
equation:

Ø )(xEψ  is the eigenfunction

Ø E is the corresponding eigenvalue

Summary:

The results presented in this section can be summarized as follows:

Ø If a microscopic system is conservative, then there exist special quantum states of the
system, called stationary states, in which the energy is sharp.

Ø Even if the number of these eigenstates is infinite, the energies of the bound states
form a discrete list.

Ø If there is a one-to-one correspondence between the quantized energies of a quantum
system and its bound state, or stationary-state wavefunctions, then the bound state en-
ergy is non-degenerate.  If there are stationary states for which there correspond more
than one distinct spatial functions, such bound states are called degenerate.

A. STATIONARY STATES FOR A FREE PARTICLE

Let's try to solve the TISE for a free particle, for which 0)( =xV , i.e.
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This is a homogeneous, second-order partial differential equation with constant coeffi-
cients, and the solution of this equation is of the form:
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This function is not normalizable, since it does not decay for ∞→x .  Two properties
follow from the impossibility of normalizing this function:

Ø The energies are not quantized, i.e. all values E>0 are allowed.
Ø The energies are degenerate (+k and -k).

One can avoid this problem by introducting a finite domain, which will be discussed in
the next lectures.

B. POTENTIAL STEP

Our next task is to solve the TISE for one-dimensional single-particle system whose po-
tential energy is piecewise constant. A piecewise constant potential is one that is constant
for all values of x except at a finite number of discontinuities-points, where it changes
from one constant value to another. One of the simplest piecewise-constant potentials is
the potential step

)()(0,
0,0)( 0

0
xVxVxV

xxV Θ=→



≥
<=

shown graphically in the figure below.
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Figure 1. Potential step (an example of a piecewise constant potential).

Our task is to solve the following problem:  We assume that we have a beam of particles
incident from the left that encounters an impulsive force at x=0. We will consider two
cases: (a) when the energy E of the particle is less than V0, and (b) when the energy of the
particle is greater than V0.

Case (a): E<V0:

For this particular case, we need to distinguish between two separate regions:

Ø On the left from the potential step, )(xVE > è  classically-allowed region
Ø On the right from the potential step, )(xVE <  è  classically-forbidden region
Ø x=0 is called a turning point è  point that separates the classically-allowed from the

classically forbidden regions (see the figure below).
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Figure 2.  Description of the various regions for case (a).

The solution procedure for this type of problems is the following one:

Ø Write down the TISE for each region in which the potential energy is constant.  Solve
the TISE up to arbitrary constants.

Ø If necessary, apply the asymptotic condition to get physically admissible state func-
tion.

Ø Match the wavefunctions and the derivatives of the wavefunctions at each of the
turning points.

Following the above-outlined procedure, we get the following general expressions for the
wavefunctions in region 1 and region 2:
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The unknown coefficient that appear in the above expression are calculated from the re-
quirement that )(xψ  be continuous and smooth, which implies that it must also have
continuous first derivative. Therefore, using the boundary conditions:
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Important notes:

Ø )1()1( AB = , which means that in region 1, two waves of equal amplitude travel in

the opposite direction and with the same phase velocity.  Because of this, the wave-
function in region 1 represents a standing wave.

Ø The above observation suggest that the probability of reflection R(E)=1 and that of
transmission T(E)=0. This result is just what we would expect were we applying clas-
sical physics to the problem.

Ø In region 2, the wavefunction represents an evanescent wave, whose amplitude equals
to
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This is consistent with the previous observation that all incident particles with E<V0

are reflected back. Therefore, we might say that no probability flow is associated
with evanescent waves.

Case (b): E>V0:
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Figure 3.  Graphical description of the variables used for this case.



Following the procedure described in part (a), we get the following general expressions
for the wavefunctions in region 1 and region 2:
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The unknown coefficients that appear in the above expression are again calculated from
the requirement that )(xψ  be continuous and smooth, which implies that it must also
have continuous first derivative. Therefore, using the boundary conditions:
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in this particular case we obtain:
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Important notes:

Ø Since all coefficients are real and their magnitude is in general not equal to one, we
might conclude that the wavefunction for continuum stationary states is of the fol-
lowing general form:
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We want to define the following two quantities:

Ø )1()1( /)( ABE =ρ  è  reflection probability amplitude

Ø )1()2( /)( AAE =τ  è  transmission probability amplitude

Then, we can write:
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Ø From the probability amplitudes, one can calculate the reflection and transmission co-
efficients.  To do so, we return to the probability current densities - the fluxes - for the



incident, reflected and transmitted waves. If we use the expression for the probability
current, of the form
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we arrive at the following results:
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If we look at the result at region 1, the probability current density 1J  equals the sum
of the incident current and a reflected current.  In region 2, we have a transmitted cur-
rent 2J .  We can, therefore, define a reflection probability R(E) and transmission
probability T(E) in the following manner:
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Since a particle is either reflected or transmitted, we must have that

T(E)+R(E)=1 .

For our particular problem, this gives us:
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Therefore, in contrast to the case E<V0, our result for E>V0 does not conform to the
predictions of classical physics.

Example:

Consider a step potential of height V0=0.3 eV. The effective mass of the electrons is as-
sumed to be 0.067 m0, where m0 is the free electron mass.

Using the expressions we derived in this section, we can immediately calculate R(E) and
T(E) for this step potential. The energy dependence of these two coefficient is shown in
the figure below.
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Figure 4.  Transmission and reflection coefficient for a step potential as a function of the
incident carrier energy.

An interesting thing to plot is the magnitude squared of the wavefunctions in regions (1)

and (2) as a function of position. The behavior of 2)(xiψ  (i=1 for region 1 and i=2 for

region 2) is shown on the next figure. We use E=0.25 eV and A(1)=1. Note that the energy

of the particles E is smaller than the barrier height. Therefore, we expect to see standing

wave pattern in region 1 [since R(E)=1 for this case] and evanescent (exponentially-

decaying solution) in region 2.
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Figure 5.  The magnitude squared of the wavefunction for carrier energy less than the bar-
rier height.


