
The story so far:

• Landauer formula + scattering matrix approach:  general 
way of treating (noninteracting, small bias) two-terminal 
conductance of quantum coherent system attached to classical 
reservoirs at absolute zero, independent of details of the 
quantum system.

• Subtle issues about conductance:  ballistic system has finite 
conductance.

• Energy relaxation processes typically modeled as taking 
place in leads or contacts, resulting in very nonthermal / 
nonequilibrium electronic distributions in “active” region of 
device.



On the plate today:

• Zeroth order effect of interactions

• Multiterminal generalization of Landauer formula:  the 
Buttiker formula.

• Reciprocity relations

• Finite temperature and larger biases

• Combining scattering matrices



“Resistivity dipole” - Coulomb interactions

Tcontact 1 contact 2

lead 1 lead 2

+k states-k states
T

1-T

x

µ

When computing chemical 
potential changes, we showed 
abrupt changes (a) at interfaces 
between contacts and leads; 
and (b) across a scatterer of 
transmittance T.

While µ may change abruptly, 
we know electrostatic potential 
cannot, because of screening.

Quick accounting for averaged
electron-electron interactions:  
Poisson equation and screening 
length.  



“Resistivity dipole” - Coulomb interactions
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Discontinuity in chemical 
potential leads to 
smeared discontinuity in 
electrostatic potential.

Charge builds up 
microscopically like a 
dipole around the 
scatterer. 

Whole system is solved 
self-consistently.

In systems with poor 
screening, effects of 
interfaces can be very big!



Buttiker formula (1988)

Treats multiple probe measurements such that all probes are 
on equal footing:
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Net current out of terminal p Contributions from scattering with 
to/from terminals q.

Rewriting
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Buttiker formula

Using this formula, potential of terminal n is determined 
by potentials of other terminals weighted by transmission 
functions:
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Note that, in general, 
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“reciprocity” -- not easy to show in general.



Buttiker formula:  4-terminal example
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Can set V4 = 0 without loss of generality….
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