
Brute – Force Treatment of 
Quantum HO



One of the most commonly encountered problems in quantum mechanics is 
that of the HARMONIC OSCILLATOR

* This is equivalent to the problem of SIMPLE HARMONIC MOTION in 
classical systems

* Such harmonic motion is known to be described by a SECOND ORDER
differential equation of the form

⇒ In this equation w is the FREQUENCY of the harmonic motion and 
the solutions to Equation 13.1 correspond to OSCILLATORY behavior

⇒ Examples of CLASSICAL systems that exhibit simple harmonic 
motion include an oscillating mass on a SPRING and the motion of a simple 
PENDULUM

⇒ Examples of QUANTUM harmonic oscillators include the 
VIBRATING ATOMS in crystals and the motion of ELECTRONS in a 
magnetic field  
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For a particle of mass m Equation 13.1 implies that the particle moves under the 
influence of a POSITION-DEPENDENT force

* By INTEGRATING this equation we obtain the corresponding POTENTIAL-
ENERGY variation of the particle

* A particle that moves in this PARABOLIC potential does so with a 
CONSTANT total energy (E) while its potential energy and momentum (p) vary 
according to  
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• Equation 13.4 shows that at the ORIGIN of the motion the potential energy is 
equal to ZERO and the momentum is MAXIMAL

* As the particle moves away from the origin however its potential energy 
INCREASES while at the same time its momentum DECREASES and eventually 
reaches zero

⇒ These TWO points define the MAXIMAL extent of oscillation which 
increases as the total energy of the particle increases
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ENERGY • POSITION-DEPENDENT ENERGY VARIATIONS FOR THE SIMPLE

HARMONIC OSCILLATOR

• THE TOTAL ENERGY OF THE PARTICLE IS CONSTANT AND

INDEPENDENT OF POSITION

• THE KINETIC-ENERGY TERM IS MAXIMAL AT THE ORIGIN (x = 0)

WHILE THE POTENTIAL ENERGY IS MAXIMAL AT THE EXTREMAL

ENDS OF THE MOTION ±±±±xmax

• THE VALUE OF xmax INCREASES WITH INCREASING TOTAL

ENERGY



Strategy for solving the quantum harmonic 
oscillator problem with the brute-force 

method

� Clean up the TISWE

� Find the solution in the asymptotic limit X(ξ)
� Factor out the asymptotic behavior: AH(ξ)X(ξ)
� Derive differential equation for H(ξ)
� Expand H(ξ) in the power series
� Put series in the diferential equation and derive 

recurrence relation

� Enforce boundary condition: Quantize E



To study the QUANTUM-MECHANICAL properties of the harmonic oscillator we 
need to solve the following form of the time-independent Schrödinger equation

* To make our discussion a little easier we introduce the CHANGE OF 
VARIABLES

* With this change the Schrödinger equation now becomes

The Quantum Harmonic Oscillator
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To begin with we note that for large values of z (x) Equation 13.9 may be 
approximated as

* The corresponding wavefunction solutions to this equation are

⇒ The second term in this equation can be NEGLECTED since it DIVERGES
for large z while we know that the range of the particle should be FINITE

* The ASYMPTOTIC form to Equation 13.11 suggests that we write the FULL
solutions to the wavefunction (valid for ALL values of z) as

The Quantum Harmonic Oscillator
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By introducing the wavefunction solution of Equation 13.12 into Equation 13.9 the 
Schrödinger equation now becomes 

* We PROPOSE to look for solutions to h(z) of the POWER-SERIES form

* Successive DIFFERENTIATION of this power series yields

The Quantum Harmonic Oscillator
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Through substitution of Equations 13.15 & 13.6 our Schrödinger equation now 
becomes

* The only way in which this equation can be satisfied for ALL values of i is if 
the coefficient of EACH power of z VANISHES

* In this way we arrive at a RECURSION FORMULA

⇒ From a knowledge of a0 we can use this formula to obtain all i-EVEN
coefficients while a knowledge of a1 allows us to obtain all i-ODD coefficients 

The Quantum Harmonic Oscillator
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Based on the above we write our wavefunction solutions as

* There is a PROBLEM with our discussion however since NOT all the solutions 
obtained in this way can be normalized!

⇒ At LARGE i the recursion formula becomes

The Quantum Harmonic Oscillator
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• When the above approximation holds our wavefunction solutions become

* These solutions have exactly the form that we DON’T want however since 
the exponential term DIVERGES in the limit of infinite z (x)

* The only way out of this problem is to require that our recursion formula 
(Equation 13.19) TERMINATES at some given value of n

⇒ That is we require some value of n for which an+2 = 0 which leads us to 
(if n is odd then all coefficients with even values of n must vanish and vice versa)

The Quantum Harmonic Oscillator

)24.13(
)!(

1

)!2/(

1
)(

22 ζζζζ ce
k

c
i

ch ki ≈≈≈ ∑∑

)19.13(
)2)(1(

)12(
2 nn a

nn

Kn
a

++
−+

=+

)25.13(12 += nK



• Equation 13.25 is a QUANTIZATION CONDITION on the energy of the 
particle

* This CRUCIAL equation tells us that the modes of vibration of the quantum 
oscillator are QUANTIZED

* For these quantized energies our RECURSION FORMULA may now be 
written as

The Quantum Harmonic Oscillator
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In general the function hn(z) will be a POLYNOMIAL of degree n in z involving 
ONLY either odd or even powers

* Apart from the overall factor (a0 or a1) they are known as HERMITE 
POLYNOMIALS Hn(z)

* The arbitrary multiplicative factor is chosen so that the coefficient of the 
highest power of z is 2n and the NORMALIZED wavefunctions are given as (see 
Appendix) 

The Quantum Harmonic Oscillator
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H0 = 1

H1 = 2x

H2 = 4x
2 – 2

H3 = 8x
3 – 12x

H4 = 16x
4 – 48x2 + 12

H5 = 32x
5 – 160x3 + 120x

THE FIRST FEW HERMITE POLYNOMIALS Hn(x)



Some oscillator wavefunctions are shown below and from their form we see that 
the behavior of the quantum oscillator is vary DIFFERENT to that of its classical 
counterpart

* The probability of finding the particle outside the classically allowed range 
is NOT zero since the particle can TUNNEL into the classically-forbidden region

* For the ODD wavefunctions the probability of finding the particle at the 
center of the parabolic potential is ZERO

The Quantum Harmonic Oscillator

• THE FIRST FOUR WAVEFUNCTIONS FOR THE HARMONIC

OSCILLATOR

• NOTE THAT THE WAVEFUNCTIONS DECAY WITH INCREASING

MAGNITUDE OF x AS WE WOULD EXPECT FOR A CLASSICAL

OSCILLATOR

• THE EFFECTIVE RANGE OF THE WAVEFUNCTION INCREASES

WITH INCREASING ENERGY AS WE WOULD EXPECT

CLASSICALLY

• THE RANGE OF THE WAVEFUNCTION EXTENDS BEYOND THAT

ALLOWED CLASSICALLY HOWEVER SINCE THE PARTICLE

CAN TUNNEL INTO THE CLASSICALLY-FORBIDDEN REGIONS

• THE PICTURE BOOK OF QUANTUM MECHANICS

S. BRANDT and H-D. DAHMEN, SPRINGER-VERLAG, NEW YORK

(1995) 



With increasing quantum number n the quantum-mechanical probability density 
begins to MATCH that expected for a CLASSICAL particle

* The probability is MAXIMAL at the ENDS of the motion where the velocity is 
ZERO and MINIMAL at the CENTER of motion where the velocity is MAXIMAL

* This is an example of the CORRESPONDENCE PRINCIPLE which requires 
quantum mechanics to yield the results of classical physics in the limit of LARGE
quantum number

The Quantum Harmonic Oscillator

• THE SOLID LINE SHOWS THE PROBABILITY DENSITY FOR

THE HUNDREDTH ENERGY LEVEL OF THE HARMONIC

OSCILLATOR

• THE DASHED LINE SHOWS THE CORRESPONDING DENSITY

FOR A CLASSICAL PARTICLE WITH THE SAME ENERGY

• FOR THE LARGE QUANTUM NUMBER CONSIDERED HERE

WE SEE A CORRESPONDENCE BETWEEN THE QUANTUM

AND CLASSICAL PROBABILITY DENSITIES

• NOTE THAT THE QUANTUM PARTICLE CAN TUNNEL BEYOND

THE RANGE OF THE CLASSICAL PARTICLE HOWEVER

(CIRCLED REGIONS)

• INTRODUCTION TO QUANTUM MECHANICS

D. J. GRIFFITHS, PRENTICE HALL, NEW JERSEY (1995)













Some General Conclusions
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Handy integrals of Eigenfunctions of the 
SHO



Position and momentum expectation values
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• Prior to their normalization solution of the Schrödinger equation yields allowed 

wavefunctions for the harmonic oscillator that take the form

* Here cn is an as yet undetermined NORMALIZATION CONSTANT and to determine this

we define the GENERATING FUNCTION

⇒⇒⇒⇒ This function is a power series in s with coefficients given by Hermite 

polynomials of the appropriate order

* DIFFERENTIATING both sides of Equation A13.2 with respect to ζζζζ yields

Appendix
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• To determine the derivative on the RHS of Equation A13.3 we note that the derivatives of 

the Hermite polynomials satisfy

* With this relation Equation A13.3 can now be rewritten as

* Solution of this differential equation yields

⇒⇒⇒⇒ We have used Equation A13.2 in the final step of this equation
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•We have seen that Hn(0) = 0 for ODD values of n while for EVEN values

* With this form Equation A13.6 can now be rewritten as

* This leads to the FINAL simple form for the GENERATING FUNCTION
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•We now note that the generating function has been defined such that

* Substituting Equation A13.10 for the generating function this becomes

* Now consider the integral
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• From Equation A13.9 it is straightforward to show that Equation A13.12 reduces to

* On the other hand we could use our original definition of the generating function

(Equation A13.4) to write the integral I as

⇒⇒⇒⇒ By definition Equations A13.13 & A13.14 must be EQUAL
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• Equating Equations A13.13 & A13.14 yields the following result

* NORMALIZATION of the wavefunction of Equation A13.1 requires

⇒⇒⇒⇒ Comparison of Equations A13.15 & A13.16 reveals

⇒⇒⇒⇒ In this way we finally (!) arrive at the NORMALIZED wavefunctions
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