
Harmonic Oscillator: 
Motion in a Magnetic Field

* The Schrödinger equation in a magnetic field

 The vector potential

* Quantized electron motion in a magnetic field

 Landau levels

* The Shubnikov-de Haas effect

 Landau-level degeneracy & depopulation



An important example of harmonic motion is provided by electrons that move 
under the influence of the LORENTZ FORCE generated by an applied MAGNETIC 
FIELD

* From CLASSICAL physics we know that this force causes the electron to 
undergo CIRCULAR motion in the plane PERPENDICULAR to the direction of the 
magnetic field

* To develop a QUANTUM-MECHANICAL description of this problem we need 
to know how to include the magnetic field into the Schrödinger equation

 In this regard we recall that according to FARADAY�S LAW a time-
varying magnetic field gives rise to an associated ELECTRIC FIELD

The Schrödinger Equation in a Magnetic Field
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To simplify Equation 16.2 we define a VECTOR POTENTIAL A associated with the 
magnetic field

* With this definition Equation 16.2 reduces to

* Now the EQUATION OF MOTION for the electron can be written as

The Schrödinger Equation in a Magnetic Field
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1. MOMENTUM IN THE PRESENCE OF THE MAGNETIC
FIELD
2. MOMENTUM PRIOR TO THE APPLICATION OF THE
MAGNETIC FIELD



Inspection of Equation 16.5 suggests that in the presence of a magnetic field we 
REPLACE the momentum operator in the Schrödinger equation by

* To incorporate this result into the Schrödinger equation we recall that the 
first term on the LHS of its (B = 0) time-independent form represents the 
KINETIC ENERGY

* Since kinetic energy is related to momentum as p2/2m this in turn suggests 
that we define the MOMENTUM OPERATOR as  

The Schrödinger Equation in a Magnetic Field
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NOTE THE THREE-DIMENSIONAL FORM



With our definition of the momentum operator at ZERO magnetic field (Equation 
16.8) we now use Equation 16.6 to obtain the momentum operator in the 
PRESENCE of a magnetic field

* With this definition we may now REWRITE the Schrödinger equation in a 
form that may be used to describe the motion of electrons in a magnetic field

 The first term in the brackets on the LHS of this equation is known as 
the CANONICAL momentum and is the momentum in the absence of a magnetic 
field

 The entire term in brackets is called the MECHANICAL or KINEMATIC
momentum and corresponds to the KINETIC ENERGY of the electron

The Schrödinger Equation in a Magnetic Field
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We now apply the results of the preceding analysis to describe the motion of 
electrons in a magnetic field

* We assume that this magnetic field is CONSTANT and points in the z-
direction

* ONE possible choice of vector potential that satisfies this equation is known 
as the LANDAU GAUGE and is given by (you can check this using Equation 16.3)

* With this choice of gauge the Schrödinger equation now becomes

Quantized Electron Motion in a Magnetic Field
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Equation 16.12 reveals that the magnetic field produces TWO effects

* The first effect is a derivative that COUPLES the motion in the x- and y-
directions as we would EXPECT for a particle that undergoes CIRCULAR motion in 
the xy-plane 

* The second effect is that the magnetic field generates a PARABOLIC 
MAGNETIC POTENTIAL of the form that we have studied for the harmonic 
oscillator!

* Now since the form of the vector potential we have chosen does NOT
depend on y this suggests that we write the WAVEFUNCTION solutions for the 
electrons as 
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NOTE HOW THE y-COMPONENT CORRESPONDS 
TO A FREELY-MOVING PARTICLE

Quantized Electron Motion in a Magnetic Field



Substitution of our wavefunction into the Schrödinger equation

* This is just the Schrödinger equation for a one-dimensional HARMONIC 
OSCILLATOR with the magnetic-field dependent CYCLOTRON FREQUENCY

* An important difference with our previous analysis however is that the 
CENTER of the parabolic potential is NOT located at x = 0 but rather at

Quantized Electron Motion in a Magnetic Field
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Solution of the Schrödinger equation yields a quantized set of energy levels known 
as LANDAU LEVELS

* The wavefunctions are the usual HERMITE POLYNOMIALS and may be 
written as

 where we have defined the MAGNETIC LENGTH lB as 

Quantized Electron Motion in a Magnetic Field
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� An important property of the quantized Landau levels is that they are highly 
DEGENERATE

* By this we mean that each Landau level is able to hold a LARGE number of 
electrons

* To obtain an expression for this degeneracy we begin by assuming that the 
circular motion of the electrons occurs in a plane with dimensions Lx  Ly

 By assuming PERIODIC boundary conditions along the y-direction (ECE 
352) we may write a quantization condition for the wavenumber ky

The Shubnikov-de Haas Effect
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WHEN A PARTICLE IS CONFINED IN A ONE-DIMENSIONAL BOX
OF LENGTH Ly ITS ALLOWED WAVENUMBERS ARE QUANTIZED

ACCORDING TO EQUATION 16.21



Since the CENTER COORDINATE of the harmonic oscillator must lie somewhere 
within the sample we may use Equation 16.21 to write the following condition

* According to Equation 16.22 EACH Landau level contains the same number of 
states at any given magnetic field

 The number of states in each level PER UNIT AREA of the sample is 
just given by

 Since each state within the Landau level can hold TWO electrons with 
OPPOSITE spins the number of ELECTRONS that can be held in each Landau level 
is

The Shubnikov-de Haas Effect
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Now let us consider what happens to a sample containing a FIXED number of 
electrons as we VARY the magnetic field

* Starting at some INITIAL magnetic field a specific number N of Landau 
levels will be occupied by electrons

 (N � 1) of these levels will be filled completely while the Nth will 
typically be PARTIALLY filled with the remaining electrons that cannot be 
accommodated in the lower levels

The Shubnikov-de Haas Effect

� FILLING OF LANDAU LEVELS BY A FIXED NUMBER OF ELECTRONS 
AT AN ARBITRARY MAGNETIC FIELD

� EACH LANDAU LEVEL IS CAPABLE OF HOLDING THE SAME
NUMBER OF ELECTRONS AND THESE LEVELS WILL BE FILLED IN
A MANNER THAT MINIMIZES THE TOTAL ENERGY OF THE SYSTEM

� BECAUSE OF THIS AT ANY MAGNETIC FILLED THE LOWEST (N-1)
LANDAU LEVELS WILL BE COMPLETELY FILLED BY ELECTRONS 
ACCOUNTING FOR (N-1)n ELECTRONS

� THE REMAINING ELECTRONS WILL BE ACCOMMODATED IN THE
PARTIALLY-FILLED UPPERMOST LEVEL 
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If we now raise the magnetic field we increase the ENERGY SPACING of the 
Landau levels and also increase their DEGENERACY

* Since more states are available in each level electrons DROP from higher 
levels to occupy empty states in the lower levels

* Consequently we eventually reach a point where the Nth Landau level is 
COMPLETELY emptied of electrons and the number of occupied Landau levels is 
now just N-1

The Shubnikov-de Haas Effect

� EMPTYING OF THE UPPERMOST OCCUPIED 
LANDAU 
LEVEL IN AN INCREASING MAGNETIC FIELD

� WITH INCREASING MAGNETIC FIELD THE 
SPACING
OF THE LANDAU LEVELS INCREASES BUT THE
NUMBER OF ELECTRONS HELD BY EACH LEVEL
ALSO INCREASES

� AS ELECTRONS DROP TO FILL NEW STATES THAT
BECOME AVAILABLE WITH INCREASING FIELD 
THE
UPPERMOST LANDAU LEVEL EVENTUALLY EMPTIES

� THIS PROCESS IS REFERRED TO AS MAGNETIC
DEPOPULATION OF LEVELS 
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The MAGNETIC DEPOPULATION we have described CONTINUES with 
increasing magnetic field until all electrons occupy only the LOWEST Landau level 
at VERY HIGH magnetic fields

* To obtain an expression for the magnetic field values at which the 
depopulations occur we consider a sample containing ns electrons PER UNIT AREA

* Since n is the number of electrons per unit area that occupy EACH Landau 
level we require those values of the magnetic field for which the following ratio is 
an INTEGER

 This relation shows that as expected the number of occupied Landau 
levels DECREASES with increasing magnetic field

 It also shows that an increasingly LARGER magnetic field increment is 
required to depopulate successively LOWER Landau levels

The Shubnikov-de Haas Effect
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The depopulation of Landau levels can actually be seen in the MAGNETO-
RESISTANCE of semiconductors which OSCILLATES at low temperatures

* The period of the oscillations INCREASES with magnetic field as expected 
from Equation 15.24 and the oscillations appear PERIODIC when plotted on an 
INVERSE-FIELD scale

 The periodicity of these SHUBNIKOV-DE HAAS oscillations is often 
used in experiment as a means to determine the electron CARRIER DENSITY

The Shubnikov-de Haas Effect

� SHUBNIKOV-DE HAAS OSCILLATIONS MEASURED IN A
GaAs/AlGaAs HETEROJUNCTION AT 4 K

� THE NUMBERS ON THE FIGURE INDICATE THE NUMBER
OF OCCUPIED LANDAU LEVELS AT SPECIFIC VALUES OF
THE MAGNETIC FIELD

� THE SPLITTING OF THE PEAK IN THE REGION OF AROUND
2.5 T RESULTS AS THE MAGNETIC FIELD BEGINS TO LIFT
THE SPIN DEGENERACY OF THE ELECTRONS

� QUANTUM MECHANICS, D. K. FERRY, IOPP (2001)



quantum Hall history

discovery: 1980

Nobel prize: 1985

K. v. Klitzing

H. Störmer R. LaughlinD. Tsui

discovery: 1982

Nobel prize: 1998
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