WKB Approximation Explained

* The Wentzel-Kramers-Brillouin (WKB) approximation is a
“semiclassical calculation” in quantum mechanics in
which the wavefunction is assumed an exponential
function with amplitude and phase that slowly varies
compared to the de Broglie wavelength, A, and is then
semiclassically expanded

* While Wentzel, Kramers and Brillouin developed this
approach in 1926, earlier in 1923 Harold Jeffreys had
already developed a more general method of
approximating linear, second-order differential equations
(the Schrodinger equation is a linear second order
differential equation)



WKB Approximation Explained,
Cont'd

* While technically this is an "Approximate
Method” not an “Exact solution” to the
Schrodinger equation, it is very close to simple
plane wave solutions that we discussed thile
describing transmission coefficient calculation in
piece-wise constant potential barriers

 The WKB method is most often applied to 1D
problems but can be applied to 3D Spherically
Symmetric problems as well (see Bohm 1951)

« The WKB approximation is especially useful in
deriving the tunnel current in a tunnel diode



Basic Idea of the Method

 The WKB approximation states that since in a constant
potential, the wavefunction solutions of the Schrodinger
equation are of the form of simple plane waves, then

w(x)=Ae™, k=2x/A= 2’”(52_ Y)

* Now, if the potential U=U(x) changes slowly with x, the
solution of the Schrodinger equation can also be written
of the general form

w(x) = Ae

where ¢(x)=xk(x).

- For the constant potential case, ¢(x)=tkx so the
phase changes linearly with x

- In a slowly varying potential ¢(x) should vary slowly
from the linear case tkx




Basic ldea of the Method, Cont’d

* Forthe two cases, E>U and E<U, let k(x) be defined as
(so we only have to solve the problem once)

k(x) = \/ 2m(k h_zU(x)) , E>U(x)

k(x) = —i\/ 2’”(U;’j) “E) i), E<U(x)




Wentzel-Kramers-Brillouin (WKB)
Approximation

« Starting from the 1D Schrédinger equation
hoo’

—5 52 VU () = By (x)

* And substituting the general solution for slowly-varying
potentials, one gets the following differential equation

i@?_(@ﬂ ()= 0
ox Ox




Wentzel-Kramers-Brillouin (WKB)
Approximation

 The WKB approximation assumes that the
potentials are slowly varying in space

« Then the 0% order approximation assumes

227? =0, % =tk(x) > g (x)== j k(x)dx +C,

—> y(x)=exp [ii I k(x)dx +C0}



Wentzel-Kramers-Brillouin (WKB)
Approximation

* If a higher order solution is required, then we
solve

’@_(%j +k2(x)=0—>a—¢— \/kz(x)H@
8x ox ox ax

« Then the 1" order approximation assumes

%9 = i\/kz(x)+z%
Ox

—> W (x)=exp| ti j\/kz(x)+z—dx+C




Wentzel-Kramers-Brillouin (WKB)
Approximation

1. In order to apply the WKB approximation we only
need to know the shape of the potential since

U(x) > k(x) > d(x) > wp(x)=exp +I\/k2(x)+l—dx+C

2. For slowly varying U(x) the first order and the
zero order approximation give almost the same
result as

%k(x) << |k ()




Wentzel-Kramers-Brillouin (WKB)
Approximation

3. The WKB approximation breaks down where E~U
(classical turning points) in which case the wavevector
k(x) approaches zero but the derivative does not and
there in fact the argument in (2) does not hold

%k(x) <<k (x)

Under these circumstances, connection formulas must
be applied to tie together regions on each side of the
classical turning point.




Example 1: Tunneling probability of potential
barrier with length L and height U

We consider the case E<U for tunneling to occur.

k() = _l,\/Zm(lhfz— E) sy (x) = exp {#\/zm(;][ E)x} _ exp{—\/zm(;]; E) x}

= = exp

»_vELWL) _ {_2 . \/2m(U—E>}
w * () (0)



