Lecture 20. Perturbation Theory: Examples

* The tilted potential well
= The quantum-confined Stark effect
* Degenerate perturbation theory

= Two-dimensional quantum well



The Tilted Potential Well

* Previously we discussed an APPROXIMATE approach to determine the energy eigenvalues
and eigenfunctions of a PERTURBED system in terms of those of an EXACT system
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*In these equations g, and ¢, are the energy eigenvalues and eigenfunctions of the
exact system while E, and y;, are those of the perturbed system

* Today we discuss some illustrative APPLICATIONS of this PERTURBATION THEORY

= We begin by considering the case of an electron that moves in a TILTED potential
well that results when a uniform electric field is applied to the system



The Tilted Potential Well

« The UNPERTURBED system that here is taken to be an INFINITE potential well centered on
the origin x =0

* The energy EIGENVALUES for this system were computed previously
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* With the well centered on the origin it is easy to show that the EIGENFUNCTIONS of
the Hamiltonian exhibit either EVEN or ODD symmetry and take the form
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The Tilted Potential Well

* For the PERTURBED system we wish to consider how the GROUND-STATE energy is
modified by the application of the electric field

* The perturbation to the exact Hamiltonian due to the application of the electric field is

V = eEx (20.3)

* The FIRST-ORDER correction to the ground-state energy depends on the matrix
element V,; and VANISHES due to the antisymmetry of the integrand
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= This result is true for ALL eigenvalues of the potential well whose first-order
corrections all vanish due to antisymmetry

= This is REASSURING since the correction to the energy should NOT depend on
the direction of the electric field



The Tilted Potential Well

* The SECOND-ORDER correction to the energy depends on matrix elements of the form

2 -2 krz T
' :IeEJ sin[Tx}xco{tx}dx, k=2,4,6,... (20.5)
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* Here we have exploited the fact that the function x is antisymmetric while cos[zx/L] is
symmetric so that the only matrix elements that do not vanish are those involving
EVEN values of k whose wavefunctions are ANTISYMMETRIC

= The second-order energy correction to the ground-state eigenvalue is therefore
EP -y AL o123 (20.6)

= As discussed previously we see that the energy is LOWERED due to the presence
of the perturbation



The Tilted Potential Well

» For a LOWER-BOUND on the second-order energy correction E,® we consider the FIRST
term of Eq. 20.6 alone (V,,)
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* Substituting this result into Eqg. 20.6 we may therefore write
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= Note here that we have exploited the fact that for the infinite well &, = 4¢,

= In order for this result to be valid we require the energy shift E,® be SMALLER
than the inter-level separation ~¢,



The Tilted Potential Well

* While we have only considered the LOWEST matrix element V,, in our calculation of E;,®
the calculation CAN be extended to higher order elements V,, ,

* An analytical solution is actually possible in this case but yields a result that differs by

only 0.1% from Eqg. 20.8

* An important result of our analysis is that in a quantum well formed between different
semiconductors an electric field REDUCES the energy gap for electron-hole pair

creation

— This is referred to as the QUANTUM-CONFINED STARK EFFECT
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* SHOWN LEFT IS THE POTENTIAL WELL IN
THE ABSENCE OF THE ELECTRIC FIELD WHILE
THE WELL IN THE APPLIED FIELD IS SHOWN
RIGHT

* NOTE HOW THE ENERGY GAP FOR ELECTRON
EXCITATION TO THE CONDUCTION BAND IS
REDUCED IN THE PRESENCE OF THE ELECTRIC
FIELD

* THIS SHIFTS THE ABSORPTION THRESHOLD OF
THE QUANTUM WELL TO LOWER FREQUENCIES



Example

« * A particle of mass m is confined in an infinite potential well of length L. If this potential
is now subject to a function perturbation of the form V(x) = La,&X-L/2) estimate the
resulting modifications to the energy levels of the well
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= The ODD energy levels are all RAISED by the SAMEamount 2a,

= The EVEN energy levels are UNAFFECTED by the perturbation to first order
however since their wavefunctions all VANISH at the position where the delta-
function perturbation is located



Degenerate Perturbation Theory

* The perturbation theory that we have developed thus far can FAIL if two or more levels of
the system under study are degenerate since the perturbation expansion then DIVERGES
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* A NEW approach is needed here and to develop this we note that since the degenerate
levels lead to divergence this suggests that we FOCUS on the effects of these levels

* To develop this degenerate perturbation theory we consider the specific problem of a
TWO-DIMENSIONAL infinite square well of side length a in the x-y plane

= It is relatively straightforward to show that the quantized energies of such a well
are given by
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Degenerate Perturbation Theory

*« The GROUND-STATE of the well is found by taking p =q =1 and is therefore NON-
DEGENERATE

* The next energy level is DOUBLY DEGENERATE however
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* It is straightforward to show that the wavefunctions associated with these two
degenerate levels are

Or=Qp 5 =Ecos7zxsin27Zy (20.11)
“ a a a

Pg =Py = Ecosz—ﬂxsinﬂ (20.12)
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Degenerate Perturbation Theory

* We now consider what happens if we add a PERTURBATION to the potential in the well
V(X,y)=—Kxy, K>0 (20.14)

* The idea in degenerate perturbation theory is to solve the Schrédinger equation
EXACTLY but only for the degenerate states

* For the doubly-degenerate level of interest here we therefore need to recast the
Hamiltonian as a 2 x 2 matrix

<A|H|A> <B|H|A>
= (20.15)
<A|H|B> <B|H|B>
* The first matrix element is easily evaluated
<A|H|A>=<A[|H,|A>+<A|V|A>=¢+0=¢ (20.16)
1 ]
REMEMBER THAT ¢, THIS INTEGRAL
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OF V (Eg. 20.14)



Degenerate Perturbation Theory

* The next matrix element is similarly evaluated
<A|H|B>=¢<A{B>-<A|Kxy|B>=—-<A|Kxy|B>

* The last term on the RHS of Eq. 20.17 is just the integral
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* The matrix Schrodinger equation therefore reduces to

{ ¢ _A}a: Ea (20.19)
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Degenerate Perturbation Theory

* The condition for solution to Eq, 20.19 is

E-¢ A
A E-¢

‘:(E—g)Z—AZ -0 (20.20)

* Solution of Eq. 20.20 now yields TWO distinct energy solutions
E=c+A (20.22)

= Thus we see that the effect of the perturbation is to LIFT the degeneracy yielding
TWO non-degenerate solutions

= The degeneracy is lifted since the perturbation to the Hamiltonian BREAKS the
symmetry of the potential well

= We will discuss some examples of degenerate perturbation theory in the
following classes



Homework

P20.1 Assuming hydrogen nucleus (proton) is a uniformly charged sphere with a radius of 10-15
m, instead of a point as we have assumed in lecture 17. Using perturbation theory,
calculate the corresponding correction in the ground state energy. Hint: The potential
energy inside the sphere is changed to 1 e

drs, a

P20.2 A particle of mass m is in an infinite potential well perturbed as shown in the figure
below. (a) Calculate the first-order energy shift of the nth eigenvalue due to the
perturbation. (b) Write out the first three nonvanishing terms for the perturbation
expansion of the ground state in ferms of the unperturbed eigenfunctions of the
infinifre well. (c) Calgulate the second-order energy shift for the ground state.

L [ hZ(40ma?)

0 al2
P20.3 Consider the perturbed 2—Dloscilla‘ror‘ Halmil‘ronian
H =——(p; + py) + S K(X*+y*) + Axy
2m 2

Use perturbation theory to calculate the energy shift of the degenerate first excited state
to first order due to the perturbation Axy. What are the first order wave functions?




WKB Approximation — Part 1

Dragica Vasileska





Important Applications in which
WKB Approximation is Used

* Tunneling Breakdown in normal diodes
(reverse biased diode)

* Tunnel (Esaki) diode (forward + reverse
bias)

» Scanning Tunneling Microscope
» Gate Leakage





A. Tunneling Breakdown
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Substrate doping (cm’s)

Breakdown voltage and depletion layer width at breakdown versus doping
density of an abrupt one-sided p-n diode. Shown are the voltage and width for a
planar (top curves), cylindrical (middle curves) and spherical (bottom curves)
junction with 1 mm radius of curvature.





Breakdown Mechanisms in a Diode

* Junction breakdown can be due to:

&

¢ tunneling breakdown
+* avalanche breakdown

®

L X 2

e One can determine which mechanism is responsible for
the breakdown based on the value of the breakdown
voltage Vg :

“ Vpp <4E,/q — tunneling breakdown
“* Vpp > 6E,/q — avalanche breakdown

“ 4E,/q <Vpp <6E,/q — both tunneling and
avalanche mechanisms are responsible





Tunneling breakdown occurs in heavily-doped pn-
junctions in which the depletion region width I 1s about
10 nm.

Zero-bias band diagram: Forward-bias band diagram:






Reverse-bias band diagram:

* Tunneling current (obtained by
using WKB approximation):

qu VA [ 4v2m*E2/2]
Xp —

I, =
4’ n’E,)” 3hgF,,

t

F_. > average electric field in
the junction

 The critical voltage for
tunneling breakdown, Vg, 1s
estimated from:

I, (Vgg) < 101

e With T\, Eg¢ and 1A .





B. Tunnel (Esaki) Diode

Leo Esaki

QUANTUM MECHANICAL TUNNELING

{A wave phenomenon.)







(Esaki) Tunnel Diode (TD)

Simplest tunneling device
Heavily-doped pn junction

— Leads to overlap of conduction and valence
bands

Carriers are able to tunnel inter-band

Tunneling goes exponentially with
tunneling distance

— Requires junction to be abrupt





Band-to-Band Tunneling in a

Tunnel Diode
., ()
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Figures of Merit

Peak current — | Peak-to-Valley Ratio (PVR)
100 kA/cm? -






Direct vs. Indirect Tunneling
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Tunnel Current Expressions





C. Scanning Tunneling Microscope

revolution of tunnelling: Scanning Tunnelling Microscope

- STM







Gate Leakage

gate leakage
tunnelling current
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Gate Leakage

® For sub-micrometer devices, due to smaller oxide thickness, there is
significant conductance being measured on the gate contact. The finite
gate current gives rise to the following effects:

< Negative => degradation in the device operating characteristics with
time due to oxide charging; larger off-state power dissipation

< Positive => non-volatile memories utilize the gate current to program
and erase charge on the “floating contact” — FLASH, FLOTOX,
EEPROM

® There are two different types of conduction mechanisms to the insulator
layer:

< Tunneling: Fowler-Nordheim or direct tunneling process

<> Hot-carrier injection: lucky electron model or Concannon model

T~

Electron is emitted into the oxide « Similar to the lucky electron model, but
when it gains sufficient energy to assumes non-Maxwellian high energy tail on
overcome the insulator/semicon- the distribution function.
ductor barrier * Requires solution of the energy balance

- equation for carrier temperature.






Tunneling Currents

® Three types of tunneling processes are schematically shown below
(courtesy of D. K. Schroder)

‘. T A v Vox<¢%
] JL . 4y
A2

FN FN/Direct Direct

« Fort, >40 A, Fowler-Nordheim (FN) tunneling dominates
- Fort, <40 A, direct tunneling becomes important
- 1|, >l atagiven V_, when direct tunneling active

» For given electric field: - I, independent of oxide thickness
- 1, depends on oxide thickness

r





Significance of Gate Leakage

© As oxide thickness decreases, the gate current becomes more

important. It eventually dominates the off-state leakage current (/; at
Vo=0V)

© The drain current /, as a function of technology generation is shown
below (courtesy of D. K. Schroder)
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FowIer-Nordhelm Tunnelmg

(DB
v EF
No applied bias With applied bias

® The difference between the Fermi level and the top of the barrier is
denoted by @4

® According to WKB approximation, the tunneling coefficient through this
triangular barrier equals to:

T ocexp{ Zh((x)dx} where: Y(x)= \/

2m”<

(®p —eEx)





Fowler-Nordheim Tunneling

® The final expression for the

Fowler-Nordheim tunneling
coefficient is:

4 2m Y ?
3eEh

T oc exp| —

® Important notes:

 The above expression
explains tunneling process
only qualitatively because
the additional attraction of
the electron back to the plate
is not included

 Due to surface
imperfections, the surface
field changes and can make
large difference in the results
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Calculated and experimental tunnel
current characteristics for ultra-thin oxide
layers.

(M. Depas et al., Solid State Electronics, Vol.
38, No. 8, pp. 1465-1471, 1995)





