Zeeman Effect

- Hydrogen Atom: 3D Spherical Coordinates
- $\Psi=$ (spherical harmonics)(radial) and probability density P
- E, L², Lz operators and resulting eigenvalues
- Angular momenta: Orbital L and Spin S
- Addition of angular momenta
- Magnetic moments and Zeeman effect
- Spin-orbit coupling and Stern-Gerlach (Proof of electron spin s)
- Periodic table
- Relationship to quantum numbers n, l, m
- Trends in radii and ionization energies

Schrödinger Equation: Coordinate Systems

1D Cartesian Kinetic energy Potential Total energy

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)
$$

3D Cartesian

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \psi(x)+V(x, y, z) \psi(x)=E \psi(x)
$$

Convert to spherical using: $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$
3D Spherical
Kinetic energy
Potential

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 \mu} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial \psi}{\partial r}\right]-\frac{\hbar^{2}}{2 \mu r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]+V(r) \psi \\
=E \psi \text { Total energy }
\end{gathered}
$$

Hydrogen Atom: 3D Spherical Schrödinger Equation

"Rewritten" Schrodinger Eqn.:

$$
\frac{\hat{p}^{2}}{2 \mu} \psi(r, \theta, Q)+V_{e f f} \psi(r, \theta, Q)=E_{n} \psi(r, \theta, Q) \quad \text { where } \quad \hat{p}^{2}=-\hbar^{2} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r}\right]
$$

Eigenfunctions:

$$
\psi_{n l m}(r, \theta, \phi)=\underset{n}{R_{n}(r)} \xlongequal{\text { Laguerre }} \xlongequal[\text { Spherical }]{\text { Polynomials }} \begin{gathered}
\text { Harmonics }
\end{gathered}
$$

Eigenvalues: $E_{n}=\frac{-z^{2} E_{0}}{n^{2}}$ where $E_{0}=\frac{1}{2}\left(\frac{k e^{2}}{\hbar}\right)^{2} \mu \approx 13.6 \mathrm{eV}$

Hydrogen Atom: 3D Spherical Schrödinger Equation

3 Quantum Numbers (3-dimensions)

$$
\begin{aligned}
& n=\text { energy level value (average radius of orbit) } \\
& \qquad \mathbf{n}=\mathbf{1}, \mathbf{2}, \mathbf{3} \ldots
\end{aligned}
$$

$$
l=\text { angular momentum value (shape of orbit) }
$$

$$
l=0,1,2, \ldots(n-1)
$$

$m=\mathrm{z}$ component of l (orientation of orbit)

$$
\mathrm{m}=-l,(-l+1) . .0,1,2, . .+l
$$

```
How many quantum states (n,l,m) exist for n = 3? Is there a general formula?
```


Wave Functions: Formulas

$$
\begin{aligned}
n=1 \quad \psi_{100} & =\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}} \\
l=0 \quad \psi_{200} & =\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(2-\frac{Z r}{a_{0}}\right) e^{-Z r / 2 a_{0}} \\
n=2 \quad \psi_{210} & =\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \frac{Z r}{a_{0}} e^{-Z r / 2 a_{0}} \cos \theta \\
l=1 & \psi_{21 \pm 1}
\end{aligned}=\frac{1}{8 \sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \frac{Z r}{a_{0}} e^{-Z r / 2 a_{0}} \sin \theta e^{ \pm i \phi}
$$

Wave Functions: Angular Component

http://cwx.prenhall.com/bookbind/pubbooks/giancoli3/chapter40/multiple3/deluxe-content.html
What is the relationship between the number of zero crossings for the radial component of the wave function and the quantum numbers n and l ?

Wave Functions: Angular \& Radial Components

Probability Density: Formula

$$
\begin{aligned}
& P=\int \psi^{*} \psi(r, \theta, \phi) d V \\
& =\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \psi^{*} \psi r^{2} \sin \theta d \varphi d \theta d r
\end{aligned}
$$

$P=4 \pi \int_{0}^{\infty} \psi^{*} \psi r^{2} d r$ for spherically symmetric ψ

$$
P=\int_{0}^{\infty} P(r) d r \text { where } P(r)=\left(4 \pi r^{2}\right) \psi^{*} \psi
$$

\Rightarrow For small $\Delta \mathrm{r}$, can use $\mathrm{P}=\mathrm{P}(\mathrm{r}) \Delta \mathrm{r}$ (analogous to 1 D case)

Probability Density: "Density" Plots

Probability Density: Cross Sections

http://webphysics.davidson.edu/faculty/dmb/hydrogen/default.html

Can you draw the radial probability functions for the 2s to 3d wave functions?

Probability Density: Cross Sections

http://cwx.prenhall.com/bookbind/pubbooks/giancoli3/chapter40/multiple3/deluxe-content.html

Rank the states (1s to 3d) from smallest to largest for the electron's most PROBABLE radial position.
For which state(s) do(es) the most probable value(s) of the electron's position agree with the Bohr model?

Probability Density: Problem

For the ground state $n=1, l=0, m=0$ of hydrogen, calculate the probability $\mathrm{P}(\mathrm{r}) \Delta \mathrm{r}$ of finding the electron in the range $\Delta \mathrm{r}=0.05 \mathrm{a}_{\mathrm{o}}$ at $\mathrm{r}=\mathrm{a}_{\mathrm{o}} / 2$

$$
\begin{gathered}
P_{100}(r) \Delta r=\left(4 \pi r^{2}\right)\left[\Psi_{100}(r)\right]^{2} \Delta r \\
\text { where } \Psi_{100}(r)=\frac{e^{-r / a_{o}}}{\sqrt{\pi} a_{o}^{1.5}} \quad \text { and } \quad\left[\Psi_{100}(r)\right]^{2}=\frac{e^{-2 r / a_{o}}}{\pi a_{o}^{3}} \\
P_{100}\left(a_{o}\right) \Delta r=\left(\pi a_{o}^{2}\right)\left(\frac{e^{-a_{o} / a_{o}}}{\pi a_{o}^{3}}\right)\left(0.05 a_{o}\right) \\
\text { after substitution of } r, \Psi_{100}, \text { and } \Delta r \\
P_{100}\left(a_{o}\right) \Delta r
\end{gathered}=e^{-1}(0.05)=0.018 \text {. }
$$

Orbital Angular Momentum L:

Related to Orbital "Shape"

- Magnitude of Orbital Angular Momentum L
$\hat{L}^{2} \psi(r, \theta, \phi)=-\hbar^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial}{\partial \phi^{2}}\right] \psi=l(l+1) \hbar^{2} \psi$
Eigenvalues: $L=\sqrt{l(l+1)} \hbar$
- Z-component of L
$\hat{L}_{z} \psi(r, \theta, \phi)=-i \hbar \frac{\partial}{\partial \phi} \psi=m \hbar \psi$
Eigenvalues: $L_{z}=m \hbar$

Orbital Momentum L: Vector Diagram

For $\underline{l=\mathbf{2}}$, find the magnitude of the angular momentum \mathbf{L} and the possible m values. Draw a vector diagram showing the orientations of \mathbf{L} with the z axis.

$$
\begin{aligned}
& l=2 \\
& L=\sqrt{l(l+1)} \hbar=\sqrt{2(2+1)} \hbar \\
& L=\underline{\sqrt{6} \hbar} \text { or } 2.45 \hbar \\
& m=-l \text { to } l=0, \pm 1 \pm 2 \\
& L_{z}=m \hbar=0, \pm 1 \hbar, \pm 2 \hbar \\
& \text { Can you draw the vector diagram for } l=3 \text { ? For } j=3 / 2 \text { ? }
\end{aligned}
$$

Spin Angular Momentum S:
 Property of Electron

- Magnitude of Spin Angular Momentum S

Eigenvalues: $\quad S=\sqrt{S(s+1)} \hbar$
For one electron: $S=\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \hbar=\sqrt{\frac{3}{4}} \hbar$

- Z-component of S

Eigenvalues: $S_{z}=m_{s} \hbar$
For one electron: $S_{z}=\frac{\hbar}{2}$

Angular Momentum: Link to Magnetic Moments

- Orbital angular momentum L and spin angular momentum s of electrons result in magnetic moments μ_{1} and μ_{s}.

Remember that $\overrightarrow{\boldsymbol{\mu}}=i \vec{A} \rightarrow\left(\frac{q v}{2 \pi r}\right) \pi r^{2}=\frac{q}{2}(v r)=\frac{q}{2}\left(\frac{\mathbf{L}}{m}\right) \quad$ where $L=m v r$

Orbital $l=0,1,2, \ldots$
$\vec{\mu}_{l}=\frac{-g_{L} \mu_{B}}{\hbar} \vec{L}=\sqrt{l(l+1)} g_{L} \mu_{B}$
z-component $\underline{\mu_{l z}=-m_{l} g_{L} \mu_{B}}$

Spin: $s=1 / 2$

$$
\vec{\mu}_{s}=\frac{-g_{s} \mu_{B}}{\hbar} \vec{s}=\sqrt{s(s+1)} g_{s} \mu_{B}
$$

z-component $\quad \mu_{s z}=-m_{s} g_{s} \mu_{B} \approx \pm \mu_{B}$
where $\vec{\mu}_{B}=\frac{e \hbar}{2 m_{e}}=5.79 \times 10^{-5} \frac{\mathrm{eV}}{\mathrm{T}}$ and $g_{L}, g_{s}=$ gyromagnetic ratios

Zeeman Effect: Splits m values

- Orbital magnetic moment μ_{L} interacts with an external magnetic field B and separates degenerate energy levels.

$$
\begin{gathered}
m=1 \\
m=0 \\
m=-1
\end{gathered}
$$

NOB
Field

$$
l=0
$$

B Field

$$
\longrightarrow m=0
$$

$$
U=-\vec{\mu} \cdot \stackrel{\rightharpoonup}{B}_{\substack{\downarrow \\
\text { assume z } \\
\text { direction }}} \Rightarrow U=-\mu_{l z} B \quad \begin{aligned}
& \text { Different energies for } \\
& \text { different m } m_{l} \text { values! }
\end{aligned}
$$

"Anomalous" Zeeman Effect: More Lines??

Zeeman

Add external
magnetic field

$$
l=0 \quad m_{l}=0
$$

Why are there more energy levels than expected from the Zeeman effect?

- Electron's spin magnetic moment μ_{s} interacts with internal B field caused by its orbital magnetic moment μ_{1} and separates energy levels.

Spin-Orbit Coupling: Splits j values

$\underline{\text { Angular Momentum Addition: }} \mathbf{L}+\mathbf{S}$ gives \mathbf{J}

- Special Case:

$$
\vec{L}+\vec{S}
$$

Vectors

$$
\begin{aligned}
& \vec{J}=\vec{L}+\vec{S} \\
& |\vec{J}|=\sqrt{j(j+1) \hbar}
\end{aligned}
$$

Quantum Numbers

$$
\begin{aligned}
& j=l+s,|l-s| \\
& m_{j}=-j,-j+1, \ldots j-1, j
\end{aligned}
$$

Example: $l=1, s=1 / 2$

$$
\begin{array}{ll}
j=1+\frac{1}{2}=\frac{3}{2} & \text { and } j=\left|1-\frac{1}{2}\right|=\frac{1}{2} \\
m_{j}=-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2} & \text { and } m_{j}=-\frac{1}{2}, \frac{1}{2}
\end{array}
$$

"Anomalous" Zeeman Effect: Spin-Orbit + Zeeman

- Quantum numbers $m_{\mathrm{j}}(\mathrm{j}-\mathrm{j}$ coupling) for HIGHER Z elements.

Angular Momentum Addition: General Rules

- General Case: $\quad \vec{J}_{1}+\vec{J}_{2}$

Vectors

$$
\begin{aligned}
& \vec{J}_{t o t}=\vec{J}_{1}+\vec{J}_{2} \\
& \left|\vec{J}_{t o t}\right|=\sqrt{j(j+1) \hbar}
\end{aligned}
$$

Quantum Numbers

$$
\begin{aligned}
& j=\left(j_{1}+j_{2}\right),\left(j_{1}+j_{2}-1\right), \ldots\left|j_{1}-j_{2}\right| \\
& m_{j}=-j,-j+1, \ldots j-1, j
\end{aligned}
$$

Example: $j_{1}=3 / 2, j_{2}=3 / 2$

$$
\begin{aligned}
& j_{\max }=\frac{3}{2}+\frac{3}{2}=3 \text { and } j_{\min }=\left|\frac{3}{2}-\frac{3}{2}\right|=0 \\
& j=3,2,1,0 \\
& m_{j}=-3,-2,-1,0,1,2,3 \text { for } j=3
\end{aligned}
$$

Stern-Gerlach Experiment: ALSO splits \boldsymbol{m} values

- A magnetic force $\left(F_{z}=\mu_{z} \frac{d B}{d z}\right)$ deflects atoms up or down by an amount that depends on its magnet moment and the B field gradient.
- For hydrogen $\left(\mathrm{m}_{\mathrm{lz}}=0\right)$, two lines are observed (spin up, spin down).
- Since $l=0$, this experiment gave direct evidence for the existence of spin.

$$
\text { Case of } m_{l}=-1,0,1
$$

Atomic

Stern-Gerlach Experiment: Problem

The angular momentum of the yttrium atom in the ground state is characterized by the quantum number $j=5 / 2$. How many lines would you expect to see if you could do a Stern-Gerlach experiment with yttrium atoms?
Remember that in the Stern-Gerlach experiment all of the atoms with different m_{j} values are separated when passing through an inhomogeneous magnetic field, resulting in the presence of distinct lines.

How many lines would you expect to see if the beam consisted of atoms with $\underline{l=1}$ and $\underline{s=1 / 2}$?

Multi-electron Atoms

$$
V_{\text {int }}=\frac{k e^{2}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|}
$$

- Schrödinger equation cannot be solved exactly for multi-electron atoms because Coulombic repulsion "mixes" variables.
- Estimate energies using single-electron wave functions and "correcting" energies with $1^{\text {st }}$-order perturbation theory.
- Orbitals "fill" in table as follows: $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{~s}, 3 \mathrm{p}, \underline{\mathrm{s}}, 3 \mathrm{~d}, 4 \mathrm{p}$.
- Only ONE electron per state (n, l, m_{l}, m_{s}) - Pauli Exclusion Rule!
- Why is 4 s filled before $3 \mathrm{~d} ? \Rightarrow 4 s$ orbital has a small bump near origin and "penetrates" shielding of core electrons better than 3d orbital, resulting in a larger effective nuclear charge and lower energy.

Periodic Table: Trends for Radii and Ionization Energies

- Effective atomic radii decrease across each row of table.
- Why? Effective nuclear charge increases and more strongly attracts outer electrons, decreasing their radius.

- Ionization energies increase across each row of table until the complete "shell" is filled.
- Alkali atoms easily give up sorbital electrons.
- Halogens have strong affinity for outer electrons.

APPENDIX: Wave Functions Formulas

Spherical Component $\mathrm{Y}_{l, m}$

$\boldsymbol{Y}_{\ell} \boldsymbol{m}_{\boldsymbol{m}}(\boldsymbol{\theta}, \phi)$
s-orbital

$$
Y_{0}^{0}=\frac{1}{2 \sqrt{\pi}}
$$

$$
l=0
$$

$$
Y_{1}^{0}=\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos \theta
$$

p-orbital

$$
\left.Y_{1}^{ \pm 1}=\mp \frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot \sin \theta \right\rvert\, e^{ \pm i \phi}
$$

$$
l=1
$$

$$
Y_{2}{ }^{0}=\frac{1}{4} \sqrt{\frac{5}{\pi}} \cdot\left(3 \cos ^{2} \theta-1\right)
$$

$$
Y_{2} \pm 1=\mp \frac{1}{2} \sqrt{\frac{15}{2 \pi}} \cdot \sin \theta \cdot \cos \theta \cdot e^{ \pm i \phi}
$$

d-orbital

$$
Y_{2} \pm 2=\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \cdot \sin ^{2} \theta \cdot e^{ \pm 2 i \phi}
$$

$$
l=2
$$

$$
Y_{3} 0=\frac{1}{4} \sqrt{\frac{7}{\pi}} \cdot\left(5 \cos ^{3} \theta-3 \cos \theta\right)
$$

$$
Y_{3} \pm 1=\mp \frac{1}{8} \sqrt{\frac{21}{\pi}} \cdot \sin \theta \cdot\left(5 \cos ^{2} \theta-1\right) \cdot e^{ \pm i \phi}
$$

$$
\begin{array}{ll}
Y_{3} \pm 2 & =\frac{1}{4} \sqrt{\frac{105}{2 \pi}} \cdot \sin ^{2} \theta \cdot \cos \theta \cdot e^{ \pm 2 i \phi} f \text {-orbital } \\
l=3
\end{array}
$$

$$
Y_{3} \pm 3=\mp \frac{1}{8} \sqrt{\frac{35}{\pi}} \cdot \sin ^{3} \theta \cdot e^{ \pm 3 i \phi}
$$

Complete Wave Function $\psi_{n, l, m}$

$\psi_{100}=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}}$	$n=1$
$l=0$	
$\psi_{200}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(2-\frac{Z r}{a_{0}}\right) e^{-Z r / 2 a_{0}}$	
$\psi_{210}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \frac{Z r}{a_{0}} e^{-Z r / 2 a_{0}} \cos \theta$	$n=2$
1	$l=0,1$

$\psi_{21 \pm 1}=\frac{1}{8 \sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \frac{Z r}{a_{0}} e^{-Z r / 2 a_{0}} \sin \theta e^{ \pm i \phi}$

$$
\begin{aligned}
& \psi_{300}=\frac{1}{81 \sqrt{3 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(27-18 \frac{Z r}{a_{0}}+2 \frac{Z^{2} r^{2}}{a_{0}^{2}}\right) e^{-Z r / 3 a_{0}} \\
& \psi_{310}=\frac{\sqrt{2}}{81 \sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2}\left(6-\frac{Z r}{a_{0}}\right) \frac{Z r}{a_{0}} e^{-Z r / 3 a_{0}} \cos \theta \\
& \left.\psi_{31 \pm 1}=\frac{1}{81 \sqrt{ } \pi}\left(\frac{Z}{a_{0}}\right)^{3}\right)^{\left.\left(6-\frac{Z r}{a_{0}}\right) \frac{Z r}{a_{0}} e^{-Z r / 3 a} \sin \theta \right\rvert\, e^{ \pm i \phi}} l= \pm 1 m= \pm 1 \\
& \psi_{320}=\frac{1}{81 \sqrt{6 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \frac{Z^{2} r^{2}}{a_{0}^{2}} e^{-Z r / 3 a_{0}\left(3 \cos ^{2} \theta-1\right)} \\
& \psi_{32 \pm 1}=\frac{1}{81 \sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \frac{Z^{2} r^{2}}{a_{0}^{2}} e^{-Z r / 3 a_{0}} \sin \theta \cos \theta e^{ \pm i \phi} \quad n=3 \\
& \psi_{32 \pm 2}=\frac{1}{162 \sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \frac{Z^{2} r^{2}}{a_{0}^{2}} e^{-Z r / 3 a_{0}} \sin ^{2} \theta e^{ \pm 2 i \phi} l=0,1,2
\end{aligned}
$$

