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Numerical Details

Dragica Vasileska and Gerhard Klimeck

1. To obtain diagonally-dominant coefficient matrix when using finite difference scheme for
the discretization of the Poisson equation, it is necessary to use some linearization
scheme. The simplest way to achieve thisisto use w — y + 6, where & issmall.

() Write down the linearized Poisson equation using this linearization scheme.

(b) Write down (derive) the scaled version of the result obtained in (a).

(c) Writethefinite-difference approximation for the scaled Poisson equation.

(d) If one solves (c) for the improvement &, show that the resultant coefficient

matrix A is diagonally dominant.

(Note: Matrix A is diagonally dominant if the absolute value of the sum of the off-
diagonal elements in each row is smaller than the absolute value of the corresponding
diagonal term.)

2. Develop a one-dimensional (1D) drift-diffusion simulator for modeling pn-junctions
(diodes) under forward and reverse bias conditions. Include both types of carriersin your
model (electrons and holes). Use the finite-difference expressions for the electron and
hole current continuity equations using Sharfetter-Gummel discretization scheme, which
was described in the class.

09 F/m and intrinsic carrier

Model: Silicon diode, with permittivity €5 =1.05x1
concentration n; =15x101%cm™ a T=300K. In all your simulations assume that
T=300K. Use concentration-dependent and field-dependent mobility models and SRH
generation-recombination process. Assume ohmic contacts and charge neutrality at both
ends to get the appropriate boundary conditions for the potential and the e ectron and hole

concentrations.

» For the electron and hole mobility use 1500 and 1000 cn“2/V-s,
respectively.



» For the SRH generation-recombination, use TAUNO=TAUP0=0.1 us. To
simplify your calculations, assume that the trap energy level coincides with
theintrinsic level.

Doping: Use Np = 10%cm™ and N D= 10Ycm™ asanet doping of the p- and n-

regions, respectively.

Numerical methods: Use the LU decomposition method for the solution of the 1D

Poisson and the two 1D continuity equations for electrons and holes individually. Use

Gummel's decoupled scheme, described in the class, to solve the resultant set of coupled

set of algebraic equations.

Outputs:

>

Plot the conduction band edge under equilibrium conditions (no current flow) and for
VA=0.625V.

Plot the electron and hole densities under equilibrium conditions (no current flow)
and for VA=0.625V.

Vary the Anode bias V, from 0 to 0.625 V, in voltage increments that are fraction
of the thermal voltage V1 = kgT/(, to have stable convergence. Plot the resulting
I-V characteristics. The current will be in A/unit area, since you are doing 1D
modeling. Check the conservation of current when going from the cathode to the
anode, which aso means conservation of particlesin your system. For the calculation
of the current density, use the results given in the notes.

For V, =0.625 V, plot the position of the electron and hole quasi-Fermi levels, with
respect to the equilibrium Fermi level, assumed to be the reference energy level.

Final note: When you submit your project report, in addition to the final results, give a

brief explanation of the problem you are solving with reference to the listing of your

program that you need to turn in with the report.
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1D Drift-Diffusion simulator for pn diodes
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implicit real*8(a-h, 0-z)
parameter(max_val = 40000)
real*8 kb, ni, Na, Nd, Ldn, Ldp, Ldi



real*8 Ncn, Ncp, NN, Nsrh_n, Nsrh_p
real*8 dop(0:max_val+1),fi(0:max_val+1), delta(0:max_val+1)
real*8 a(0:max_val+1),b(0:max_val+1),c(0:max_val+1)
real*8 f(0:max_val+1)
real*8 d(0:max_val+1),v(0:max_val+1)
real*8 n(0:max_val+1),p(0:max_val+1)
logical flag_conv
integer method

Cee. Define fundamental constants and material parameters:

g =1.602D-19
kb =1.38D-23
eps = 1.05D-12
T =300

ni =1.5D10

Vt = kb*T/q
RNc =2.8D20

dEc = Vt*dlog(Rnc/ni)

Coeene Read doping:

Print*,'Acceptor doping concentration:'
read*,Na

Print*,'Donor doping concentration:'
read*,Nd

print*,'Maximum applied bias'
read*,Va_max

print*,'Voltage step’

read*,dVa

........ Calculate relevant parameters for the simulation:
(1) Built-in voltage:
Vbi = Vt*dlog(Na/ni*Nd/ni)
W = dsqrt(2.*eps*(Na+Nd)*Vbi/g/Na/Nd)
Wn = W*Na/(Na+Nd)
Wp = W*Nd/(Na+Nd)
E_p = g*Nd*Wn/eps
Ldn = dsqrt(eps*Vt/q/Nd)
Ldp = dsqrt(eps*Vt/q/Na)
Ldi = dsqrt(eps*Vt/g/ni)

open(unit=1,file="input.params',status="unknown")
write(1,*)'Na[cm-3]=",Na
write(1,*)'Nd[cm-3]=",Nd
write(1,*)'Vbi[V]=',Vbi
write(1,*)'W[cm]="W
write(1,*)'Wn[cm]="Wn
write(1,*)'Wp[cm]="Wp
write(1,*)'E_peak[V/cm]="E_p
write(1,*)'Ldn[cm]=',Ldn
write(1,*)'Ldp[cm]=",Ldp

write(1,%)"

write(1,%)"

write(1,*)'Convergence of the outer loop'

......... Define some material constants:
Ncn = 1.432D17
rmu_1n = 88.D0
rmu_2n = 1252.D0
Ncp = 2.67D17
rmu_1p = 54.3D0
rmu_2p = 407.D0
tau_n0 = 1.D-7
tau_p0 = 1.D-7
Nsrh_n=5.D16
Nsrh_p =5.D16

......... Setting the size of the simulation domain based
on the analytical results for the width of the depletion regions
X_max = 0.
if(x_max.lt. Wn)x_max = Wn



if(x_max.lt. Wp)x_max = Wp
X_max = 70*x_max

Coeeen Setting the grid size based on the extrinsic Debye lengths:
dx = Ldn
if(dx.gt.Ldp)dx=Ldp
dx = dx/20

Coeereen Calculate the required number of grid points and renormalize dx:
n_max = x_max/dx
print*,n_max
if(n_max.gt.max_val)then
print*,'Maximum array size exceeded!'
goto 111
endif
dx = dx/Ldi

Coeereen Set up the doping C(x)=Nd(x)-Na(x)that is normalized with ni:
doi=0,n_max+1
if(i.le.n_max/2)then

dop(i) = -Na/ni
else
dop(i) = Nd/ni
endif
enddo
Coeeres Initialize the potential based on the requirement of charge
C neutrality throughout the whole structure:

doi=0, n_max+1
zz = 0.5*dop(i)
if(zz.gt.0)then
xx = zz*(1.+dsqrt(1.+1./(zz*zz)))
elseif(zz.It.0)then
xx = zz*(1.-dsqrt(1.+1./(zz*zz)))
endif
fi(i) = dlog(xx)
enddo

delta_acc = 1.D-6 | preset tolerance
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C
CCCCCCCCCCCCCCCCCCCCCCCCCCrrleeeeeeeeeeeeeeeeeeeeereeecceeccceccececececececececcececce
Cccccececece
C (A) Define the elements of the coefficient matrix for the internal nodes and
C initialize the forcing function:
dx2 = dx*dx
doi=2, n_max-1
a(i) = 1./dx2
c(i) = 1./dx2

b(i) = -(2./dx2+dexp(fi(i))+dexp(-fi(i)))
f(i) = dexp(fi(i))-dexp(-fi(i))-dop(i) -
1 fi(i)*(dexp(fi(i))+dexp(-fi(i)))
enddo

C (B) Define the elements of the coefficient matrix and initialize the forcing
Cc function at the ohmic contacts

a(l) =0.

c(l)=0.

b(1) = 1.

f(1) =fi(1)

a(n_max) = 0.

c(n_max) = 0.

b(n_max) = 1.

f(n_max) = fi(n_max)



C

C

(C) Start the iterative procedure for the solution of the linearized Poisson
equation using LU decomposition method:

flag_conv = .false. I convergence of the Poisson loop
k _iter=0
do while(.not.flag_conv)

k_iter = k_iter + 1

d(1) =b(2)

doi=2,n_max

d(i) = b(i) - a(i)*c(i-1)/d(i-1)
enddo
Solution of Lv = f:
v(1) =1(1)
doi=2,n_max
v(i) = f(i) - a(i)*v(i-1)/d(i-1)
enddo
Solution of U*fi=v:

temp = v(n_max)/d(n_max)

delta(n_max) = temp - fi(n_max)

fi(n_max)=temp

doi=n_max-1,1,-1

temp = (v(i)-c(i)*fi(i+1))/d(i)
delta(i) = temp - fi(i)
fi(i) = temp
enddo

Test update in the outer iteration loop:
delta_max = 0.
doi=1,n_max
xx = dabs(delta(i))
if(xx.gt.delta_max)delta_max=xx
enddo

print*,k_iter, delta_max
write(1,*)k_iter, delta_max

Test convergence and recalculate forcing function and
central coefficient b if necessary:
if(delta_max.It.delta_acc)then
flag_conv = .true.
else
doi=2, n_max-1
b(i) = -(2./dx2+dexp(fi(i))+dexp(-fi(i)))
f(i) = dexp(fi(i))-dexp(-fi(i))-dop(i)-

1 fi(iy*(dexp(fi(i))+dexp(-fii)))

enddo
endif

enddo

(D) Write the results of the simulation in files:
open(unit=3,file='cond_band',status="unknown’)
open(unit=4 file="tot_charge',status="unknown')
open(unit=5file="el_field',status="unknown’)
open(unit=6,file="np_data’,status="unknown')
open(unit=7 file="quasi_ef',status="unknown")
open(unit=8,file="curr_profile',status="unknown’)
open(unit=9,file="la_vs_Va',status='unknown")
xx = 0.
doi=1, n_max

write(3,*)xx,dEc-Vt*fi(i)

ro = -g*ni*(dexp(fi(i))-dexp(-fi(i))-dop(i))

write(4,*)xx,ro

if(i.gt.1)then
el_field1 = -(fi(i+1)-fi(i))*Vt/dx/Ldi
el_field2 = -(fi(i+1)-fi(i-1))*Vt/(2.*dx*Ldi)
write(5,%)xx,el_fieldl,el_field2

endif

n(i) = dexp(fi(i))

p(i) = dexp(-fi(i))



write(6,*)xx,n(i)*ni,p(i)*ni
XX = XX + dx*Ldi

enddo

close(3)

close(4)

close(5)

close(6)

close(7)

close(8)

close(9)

111 continue

end

FUNCTION BER(X)

IMPLICIT REAL*8(A-H, O-Z)
LOGICAL FLAG_SUM

FLAG_SUM = .FALSE.
if(x.gt.0.01)then
Ber = x*dexp(-x)/(1.-dexp(-x))
elseif(x.It.0.and.dabs(x).gt.0.01)then
Ber = x/(dexp(x)-1.)
elseif(x.eq.0)then
Ber =1.D0
else
temp_term = 1.
sum = temp_term
i=0.
do while(.not.flag_sum)
i=i+1
temp_term = temp_term*x/dfloat(i+1)
if(sum+temp_term.eq.sum)flag_sum = .true.
sum = sum + temp_term
enddo
Ber = 1./sum
endif
RETURN
END



Initialize parameters:

-Mesh size

-Discretization coefficients

-Doping density

-Potential based on charge neutrality

Solve for the updated potential
given the forcing function using LU decomposition

Update:
| - Central coefficient of the linearized Poisson Equation i

v

- Forcing function

> tolerance Test maximum
absolute error update

Equilibrium solver } < tolerance

Non-Equilibrium solver

AV is a fraction of the
thermal voltage V-,
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Calculate coefficients for:

,| - Electron continuity equation

- Hole continuity equation

- Update generation recombination rate

|

Solve electron continuity equation using LU decomposition
Solve hole continuity equation using LU decomposition

Update:
- Central coefficient of the linearized Poisson Equation
- Forcing function

Solve for the updated potential
given the forcing function using LU decomposition

> tolerance Test maximum
absolute error update

< tolerance

Calculate current

y

no

Maximum voltage exceeded?




WKB Approximation — Part 1

Dragica Vasileska





Important Applications in which
WKB Approximation is Used

* Tunneling Breakdown in normal diodes
(reverse biased diode)

* Tunnel (Esaki) diode (forward + reverse
bias)

» Scanning Tunneling Microscope
» Gate Leakage





A. Tunneling Breakdown
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Breakdown voltage and depletion layer width at breakdown versus doping
density of an abrupt one-sided p-n diode. Shown are the voltage and width for a
planar (top curves), cylindrical (middle curves) and spherical (bottom curves)
junction with 1 mm radius of curvature.





Breakdown Mechanisms in a Diode

* Junction breakdown can be due to:

&

¢ tunneling breakdown
+* avalanche breakdown

®

L X 2

e One can determine which mechanism is responsible for
the breakdown based on the value of the breakdown
voltage Vg :

“ Vpp <4E,/q — tunneling breakdown
“* Vpp > 6E,/q — avalanche breakdown

“ 4E,/q <Vpp <6E,/q — both tunneling and
avalanche mechanisms are responsible





Tunneling breakdown occurs in heavily-doped pn-
junctions in which the depletion region width I 1s about
10 nm.

Zero-bias band diagram: Forward-bias band diagram:






Reverse-bias band diagram:

* Tunneling current (obtained by
using WKB approximation):

qu VA [ 4v2m*E2/2]
Xp —

I, =
4’ n’E,)” 3hgF,,

t

F_. > average electric field in
the junction

 The critical voltage for
tunneling breakdown, Vg, 1s
estimated from:

I, (Vgg) < 101

e With T\, Eg¢ and 1A .





B. Tunnel (Esaki) Diode

Leo Esaki

QUANTUM MECHANICAL TUNNELING

{A wave phenomenon.)







(Esaki) Tunnel Diode (TD)

Simplest tunneling device
Heavily-doped pn junction

— Leads to overlap of conduction and valence
bands

Carriers are able to tunnel inter-band

Tunneling goes exponentially with
tunneling distance

— Requires junction to be abrupt





Band-to-Band Tunneling in a

Tunnel Diode
., ()

.(e)

(b) (d)






Figures of Merit

Peak current — | Peak-to-Valley Ratio (PVR)
100 kA/cm? -






Direct vs. Indirect Tunneling
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Tunnel Current Expressions





C. Scanning Tunneling Microscope

revolution of tunnelling: Scanning Tunnelling Microscope

- STM







Gate Leakage

gate leakage
tunnelling current
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Gate Leakage

® For sub-micrometer devices, due to smaller oxide thickness, there is
significant conductance being measured on the gate contact. The finite
gate current gives rise to the following effects:

< Negative => degradation in the device operating characteristics with
time due to oxide charging; larger off-state power dissipation

< Positive => non-volatile memories utilize the gate current to program
and erase charge on the “floating contact” — FLASH, FLOTOX,
EEPROM

® There are two different types of conduction mechanisms to the insulator
layer:

< Tunneling: Fowler-Nordheim or direct tunneling process

<> Hot-carrier injection: lucky electron model or Concannon model

T~

Electron is emitted into the oxide « Similar to the lucky electron model, but
when it gains sufficient energy to assumes non-Maxwellian high energy tail on
overcome the insulator/semicon- the distribution function.
ductor barrier * Requires solution of the energy balance

- equation for carrier temperature.






Tunneling Currents

® Three types of tunneling processes are schematically shown below
(courtesy of D. K. Schroder)

‘. T A v Vox<¢%
] JL . 4y
A2

FN FN/Direct Direct

« Fort, >40 A, Fowler-Nordheim (FN) tunneling dominates
- Fort, <40 A, direct tunneling becomes important
- 1|, >l atagiven V_, when direct tunneling active

» For given electric field: - I, independent of oxide thickness
- 1, depends on oxide thickness

r





Significance of Gate Leakage

© As oxide thickness decreases, the gate current becomes more

important. It eventually dominates the off-state leakage current (/; at
Vo=0V)

© The drain current /, as a function of technology generation is shown
below (courtesy of D. K. Schroder)
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FowIer-Nordhelm Tunnelmg

(DB
v EF
No applied bias With applied bias

® The difference between the Fermi level and the top of the barrier is
denoted by @4

® According to WKB approximation, the tunneling coefficient through this
triangular barrier equals to:

T ocexp{ Zh((x)dx} where: Y(x)= \/

2m”<

(®p —eEx)





Fowler-Nordheim Tunneling

® The final expression for the

Fowler-Nordheim tunneling
coefficient is:

4 2m Y ?
3eEh

T oc exp| —

® Important notes:

 The above expression
explains tunneling process
only qualitatively because
the additional attraction of
the electron back to the plate
is not included

 Due to surface
imperfections, the surface
field changes and can make
large difference in the results
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Calculated and experimental tunnel
current characteristics for ultra-thin oxide
layers.

(M. Depas et al., Solid State Electronics, Vol.
38, No. 8, pp. 1465-1471, 1995)





