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Importance of Hydrogen Atom

Hydrogen is the simplest atom

The quantum numbers used to characterize the allowed
states of hydrogen can also be used to describe
(approximately) the allowed states of more complex
atoms

— This enables us to understand the periodic table

The hydrogen atom is an ideal system for performing
precise comparisons of theory and experiment

— Also for improving our understanding of atomic
structure

Much of what we know about the hydrogen atom can be
extended to other single-electron ions

— For example, Het and Li%*



Early Models of the Atom

Electron

« J.J. Thomson’s model of
the atom

— A volume of positive
charge

— Electrons embedded
throughout the volume

« A change from Newton'’s
model of the atom as a
tiny, hard, indestructible
sphere
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“‘watermelon” model



Experimental tests

Viewing
screen

Expect:

1. Mostly small
angle scattering

= 2. No backward

SRS scattering events

Target Results:

[.ead 1. Mostly small

screen scattering events
2. Several
backward
scatterings!!!

(a)

Source

\‘//
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Early Models of the Atom

Rutherford’s model ”

— Planetary model .

— Based on results of y 1 |
thin foil experiments - (+)

— Positive charge is \ \ -
concentrated in the Yoo
center of the atom, \ N /
called the nucleus kK &

— Electrons orbit the o -

nucleus like planets
orbit the sun



Problem: Rutherford’s model

The “size” of the atom in Rutherford’s model is about 1.0 x 1010 m.
(a) Determine the attractive electrical force between an electron
and a proton separated by this distance.

(b) Determine (in eV) the electrical potential energy of the atom.




The “size” of the atom in Rutherford’s model is about 1.0 x 10-19 m. (a) Determine the
attractive electrical force between an electron and a proton separated by this
distance. (b) Determine (in eV) the electrical potential energy of the atom.

Electron and proton interact via the Coulomb force
Given:
1.0 x 109 m qa, (8:99x10°N-m?/C?)(1.60x10°C)
F=K 2 = 2
r (1.0x10%m)
=2.3x10°N
Find- Potential energy is
(@) F=7 4.9 ~18 leV
_ PE = =-2.3x10"J =-14¢eV
(b) PE=7 A (1.6><1019J




Difficulties with the Rutherford
Model

« Atoms emit certain discrete characteristic frequencies of
electromagnetic radiation

— The Rutherford model is unable to explain this
phenomena

* Rutherford’s electrons are undergoing a centripetal
acceleration and so should radiate electromagnetic
waves of the same frequency

— The radius should steadily decrease as this radiation
IS given off
— The electron should eventually spiral into the nucleus
* |t doesn't



Emission Spectra

A gas at low pressure has a voltage applied to it
A gas emits light characteristic of the gas

When the emitted light is analyzed with a spectrometer, a series of
discrete bright lines is observed

— Each line has a different wavelength and color
— This series of lines is called an emission spectrum

(a)
A(nm) 400 500 600 700

Alnm) T I

400 500 600
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Emission Spectrum of Hydrogen

« The wavelengths of hydrogen’s spectral lines can be found from

1 1 1
X:RH(ZZ - nzj

— Ry, is the Rydberg constant
« R, =1.0973732 x 10" m*
— nisaninteger,n=1, 2, 3, ...

— The spectral lines correspond to 486.1 656.9
different values of n [
« Ak.a. Balmer series 364.6  410.2 434.1
- Examples of spectral lines S > A(nm)

— n=3,A=656.3 nm
— nNn=4,A=486.1 nm



Absorption Spectra

* An element can also absorb light at specific wavelengths

« An absorption spectrum can be obtained by passing a

continuous radiation spectrum through a vapor of the
gas

« The absorption spectrum consists of a series of dark

lines superimposed on the otherwise continuous
spectrum

— The dark lines of the absorption spectrum coincide
with the bright lines of the emission spectrum



Applications of Absorption
Spectrum

« The continuous spectrum emitted by the Sun passes
through the cooler gases of the Sun’s atmosphere

— The various absorption lines can be used to identify
elements in the solar atmosphere

— Led to the discovery of helium



Recall Bohr's Assumptions

« Only certain electron orbits are stable. Radiation is
emitted by the atom when the electron “jumps” from a
more energetic initial state to a lower state

E-E, =hf
* The size of the allowed electron orbits is determined by a

condition imposed on the electron’s orbital angular
momentum

mw =ni, n=123,..

Why is that?



Modifications of the Bohr
Theory — Elliptical Orbits

« Sommerfeld extended the results to include
elliptical orbits

— Retained the principle quantum number, n
— Added the orbital guantum number, £
« { ranges from 0 to n-1 in integer steps
— All states with the same principle guantum
number are said to form a shell
— The states with given values of n and £ are
said to form a subshell



Modifications of the Bohr Theory —
Zeeman Effect and fine structure

* Another modification was needed to account for the Zeeman effect

— The Zeeman effect is the splitting of spectral lines in a strong
magnetic field

— This indicates that the energy of an electron is slightly modified
when the atom is immersed in a magnetic field

— A new quantum number, m ,, called the orbital magnetic quantum
number, had to be introduced
« m ,can vary from - £ to + £ in integer steps

» High resolution spectrometers show that spectral lines are, in fact, two
very closely spaced lines, even in the absence of a magnetic field

— This splitting is called fine structure

— Another quantum number, m,, called the spin magnetic quantum
number, was introduced to explain the fine structure



de Broglie Waves

* One of Bohr's postulates was the angular momentum of
the electron is quantized, but there was no explanation
why the restriction occurred

« de Broglie assumed that the electron orbit would be
stable only if it contained an integral number of electron
wavelengths

—

(a) (b)
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de Broglie Waves In the
Hydrogen Atom

 In this example, three
complete wavelengths are
contained in the
circumference of the orbit

* In general, the circumference
must equal some integer
number of wavelengths

2rr =nl, A=123,..

P

mv
mw =ni, n=123,..

This was the first convincing argument that the wave nature of
matter was at the heart of the behavior of atomic systems




Quantum Mechanics and the
Hydrogen Atom

* One of the first great achievements of quantum
mechanics was the solution of the wave
equation for the hydrogen atom

* The significance of quantum mechanics is that
the quantum numbers and the restrictions
placed on their values arise directly from the
mathematics and not from any assumptions
made to make the theory agree with
experiments



Problem: wavelength of the
electron

Determine the wavelength of an electron in
the third excited orbit of the hydrogen
atom, with n = 4.




Determine the wavelength of an electron in the third excited orbit of the hydrogen
atom, with n = 4,

Recall that de Broglie’s wavelength of electron

Given: depends on its momentum, A = h/(m_v). Let us find it,
n=4 N7
mwr,=na, SO mMV= .
r=n‘a, SO mMv= "
Recall that n ; (27ra0) -
Find:
A, =7 Thus, 1= - (27a,)n=87(0.0529nm) =1.33nm

e ' rrLV




Quantum Number Summary

GBS Three Quantum Numbers for the Hydrogen Atom

Quantum Number of
Number Name Allowed Values Allowed States
n Principal quantum number 1,25 850 o s Any number
¢ Orbital quantum number L2 s — 1 n
me Orbital magnetic quantum —€,—-€+1,. . ., 2¢ + 1
number 0,...,-1,¢€

© 2003 Thomson - Brooks Cole

« The values of n can increase from 1 in integer steps
« The values of £ can range from 0 to n-1 in integer steps

- The values of m , can range from - to £ in integer steps



Spin Magnetic Quantum

» Itis convenient to think of Lo
the electron as spinning T e TN
on its axis / N
. I
— The electron is not \ v &9
physically spinning Vs L
* There are two directions ()
for the spin
— Spinup, m, =7~ ,/’N"‘:“‘“*n\
. 4 ucleus N
— Spin down, m_ = -7 / |
. . ' > | B
* There is a slight energy \ r &5
difference between the S L |
two spins and this b Y
accounts for the Zeeman © 2003 Thomson - Brooks Cole Splll down

effect



Electron Clouds

« The graph shows the Py
solution to the wave
equation for hydrogen in
the ground state

— The curve peaks at the f
Bohr radius /

— The electron is not /
confined to a particular /
orbital distance from /
the nucleus /

- The probability of finding / -
the electron at the Bohr 4= 00529 nm 7
radius is a maximum SEoeinily

A\

\

\

\




Electron Clouds

The wave function for
hydrogen in the ground y
state Is symmetric

— The electron can be
found in a spherical
region surrounding the
nucleus

The result is interpreted
by viewing the electron

as a cloud surrounding

the nucleus

— The densest regions of ... sweos
the cloud represent
the highest probability
for finding the electron




1738 Number of Electrons in

Filled Subshells and Shells
Number of Number of
Electrons in Electrons in
Shell Subshell Filled Subshell Filled Shell
K((n=1) s(€ = 0) 2 2
s(€ = 0) 9 |
L(n=2) p(€=1) 6} 8
s(€ = 0) i
M(n = 3) p(€ = 1) 6 ¢ 18
d(€ = 2) 10
s(€ = 0) 9]
€ =1) 6
N (n = 4) ‘3({?:2) i ¢ 32
f(€ = 3) 14
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Mathematical Detalls

Roadmap for solution of Hydrogen-like atoms

« Start from 3D TISE for electron in Coulomb potential of nucleus

« Separate variables to give 1D radial problem and angular problem
Solution of angular part already known
In terms of spherical harmonics.

« Simplify 1D radial problem using substitutions and atomic units

 Solve radial problem
Extract asymptotic solution at large r
Use Frobenius method
Find eigenvalues by requiring normalizable solutions




Reminder: SE In three
dimensions

H-atom is our first example of the 3D Schrodinger equation

Wavefunction and potential energy are now
functions of three spatial coordinates:

y (x) >y (r)=y(xy.2)
V(X)>V(r)=V(xY,z)

P+ )+ P

2m

2 2 2 2 2
_h_vzz_h 82+82+82
2m 2m| ox® oy° 0z

Kinetic energy involves three pﬁ p° B
components of momentum om - om
h* 0
- 2mox?
Interpretation of 3 2
wavefunction; d r‘w(r,t)‘

b (r.t)

‘2

probability of finding particle in a probability density at r

volume element centred onr

Time-independent Schrodinger equation

(probability per unit volume)

A

(Fw(r)=Ey(r)

—— Ve (r)+V(r)y(r)=Ey(r)




The Hamiltonian for a hydrogenic atom

In a hydrogenic atom or ion with nuclear
charge +Ze there is the Coulomb -
attraction between electron and nucleus. o)
This has spherical symmetry — potential
only depends on r. This is known as a Ze2 I
CENTRAL POTENTIAL V(r)=-—

The Hamiltonian operator is

NB: for greater accuracy we should use the reduced mass not the electron mass
here. This accounts for the relative motion of the electron and the nucleus (since
the nucleus does not remain precisely fixed):

mm, .
m, - u=——"—; m, =electron mass, m, = nuclear mass
m, +m,



Hamiltonian for hydrogenic atoms

The natural coordinate system is spherical polars. In
this case the Laplacian operator becomes (see 2B72):

2 2
v2:ii r2 o\__L 12 = —h? _iﬁ(siné? g j+ 12 82
reor\ or) nr? sing 06 00 ) sin*6 o¢

So the Hamiltonian is

2 2 2 "2 2
2m, Are 2mreor\ or) 2mr°  Aneg,r

TISE for H-like atom is g
(m = m, from now on) H(r)l/j(r):El/j(r)

W0 (rzﬁz//(r)}rl:zz//(r)_ Ze?
2mr* or or 2mr®  Age,r

w(r)=Ey(r)




Angular momentum and the H atom

2 ~ ,
I:I(r):— " 2a(r2£j+ L2_ zZe
2mr< or or 2mr = Ame,r
)
Reminder: d . "
Ehrenfest’s theorem % = I%<[ H Q]> + <8_?>

CONCLUSIONS

» The angular momentum about any axis and the total
angular momentum commute with the Hamiltonian

* They are therefore both conserved quantities

» We can have simultaneous eigenfunctions of these
operators and the Hamiltonian

* We can have well-defined values of these quantities and
the energy at the same time




The angular wavefunction

This suggests we look for W(r) — W(r, 9, ¢) = R(r)Ylm (9, ¢)

separated solutions of the form

The angular part are the eigenfunctions of the total angular momentum operator
L2. These are the spherical harmonics, so we already know the corresponding
eigenvalues and eigenfunctions (see §5):

1
Yy, (0,9) =——
Y,.(0.4)=miY, (0,4) o09) = 2
" 3
LY (0.6) =1 (1 +1) 7Y, (6.9) Ya(6,) = -, sind explig)
Eigenvaues of 2 arel(l +1)A2, with1 =0,1,2,... /
. . . Y, (0,0) = cos@
Eigenvalues of L, are m#, with —1 <m<|
| = principal angular momentum quantum number. Y_.(0,0) =, /8—Sin0exp(—i¢)
T

m = magnetic quantum number (2I+1 possible values).

Note: this argument works for any spherically-symmetric
potential V(r), not just the Coulomb potential.



The radial equation

Substitute separated solution into the time-independent Schrodinger equation

2mrlor or -

w(r,0,4)=R(r)Y,. (0,9) n 5(r25‘/’j+2£2"’2 28 )= Ep(r)
mre 4, r

R=ER

Get radial equation # d drR) 1(l + 1%’ 7e?
—— —(rz j+ —R
2mr < dr dr 2mr

Are,

Note that this depends on | but not on m: R(r) and E therefore involve
the magnitude of the angular momentum but not its orientation.



The radial equation (2)

Define a new radial
function y(r) by:

R(r) :&

_ —— R=ER
r 2mr < dr

R_
dr 2mr ?

1 d(rzde+I(I+1)h2 76

Arce,r

Get radial equation for x(r) 72 dzz _{I (I +1)h2 ) 7e?

_ - E
2m dr? 2mr ? 47zgor}( ~




The effective potential

New radial equation looks like the 2 42 5 5
1D Schrodinger equation with an _h_ dx + (I +1)n — Ze y=Ey
effective potential 2m dr? 2mr? Ane,r

y (r)_l(l+1)h2_ Ze’ n dy
B © ey - 2m dr?

+ Vs Ny =Ey

2mr
1D TISE n° dy
- 2

V(r) y

»

+V(X)y = Ey

2m dx

v

(1 +1)7?
2mr

is known as the centrifugal
barrier potential




The centrifugal barrier

Where does the centrifugal barrier come from? I( +1)h2
VC (r) — 2
CLASSICAL ARGUMENT 2mr

Fixed | corresponds to fixed angular momentum for the electron. L =mv,r
so as r becomes small,V, must increase in order to maintain L. This causes an
increase in the apparent outward force (the ‘centrifugal’ force).

For circular motion B va B | 2 L=mmv,r
r mr’
2
F = —d—V =V = L >
dr 2mr

Alternatively, we can say that the energy required to supply the extra
angular speed must come from the radial motion so this decreases as
if a corresponding outward force was being applied.



Roadmap for solution of radial equation

_h2 d*y

2m dr?

i

(| +D)n° Ze
(I +Dn* _ }Z:EZ

2mr®  Ane,r

Simplify equation using atomic units

l//nlm(r) — R(r)Ylm(ea ¢)

R(r) :@

Solve equation in the asymptotic limit (large r) Z(r)

Gives a decaying exponential solution

> eXp(—«r)

[—o0

Define new radial function by factoring out asymptotic solution

Solve equation for F(r) using the series (Frobenius) method |F(r) = Z ar p+s
p

x(r) = F(r)exp(—«r)

Find that solution is not normalizable unless series terminates.
This only happens if the eigenvalues have certain special values.
Hence we find the eigenvalues and eigenstates of the H-atom.




Atomic units

There are a lot of physical constants in these expressions. It makes atomic
problems simpler to adopt a system of units in which as many as possible of
these constants are one. In atomic units we set:

Planck constant 7 =1 (dimensions [ML°T '])

Electron mass m, =1 (dimensions[M])
2

Constant apearing in Coulomb's law =1 (dimensions [ML’T ?])

dre,
It follows that:
Unit of length = (4;[28 0 jh—z =5.29177x10*m=Bohr radius, a,
S
Unit of energy = (onj ;nj = 4.35974x10°J = 27.21159eV=Hartree, E,

In these units the radial equation becomes

_|_

7 d2;5{|(|+1)h2_ Ze’ }FEZ 1d%y [|(|+1)_z

—>—= —|x=E
2m dr? 2mr? Ame,r 2 dr? 2r? r}( «




Asymptotic solution of
radial equation (large r)

Consider the radial equation at very large .
distances from the nucleus, when both terms 1d7y N I+y z| e
in the effective potential can be neglected. 2 dr? or 2 r r=EX

We are looking for bound states of the atom
where the electron does not have enough
energy to escape to infinity (i.e. E < 0):

2

PutE=-2_
2

This gives
g d2)(
dr?

For normalizable solutions we must take the decaying solution

=’y = y(r) = exp(«r)

Inspired by this, rewrite the solution in terms . .
of yet another unknown function, F(r): Z(r) =F (r) exp( Kr)




Differential equation for F

Derive equation for F

Differential equation for F:

_1d%y

2 dr®

+Pa+n_z

2r° r}{:EZ

x(r) = F(r)exp(-«r)

|

—— 2K

dr?

d _1(+D 22

- }F(r)zo

r




Series solution (1)

Look for a power-series solution (Frobenius method). The pointr=0is a
regular singular point of the equation so at least one well-behaved series

solution should exist (see 2B72).

F(r)=> ar™®
P

Substitute

:

d’ d

&, d 1(+D 2z

r? dr r? r

k()

ICZ‘:“)apr'f”s‘2 [(p+s)(p+s—1)-I(l +1)]+§aprp+s‘1[—21<( p+Ss)+2Z |=0




Series solution (2)

The indicial equation that fixes s comes from equating coefficients of
the lowest power of r whichis s - 2

iapr"”s‘2 [(p+s)(p+s—1)-I(l +1)]+§aprp+s‘1[—21<( p+Ss)+2Z |=0

p=0

s(s-)-1(l+1) =0
= s°—-s-1(1+1)=0
= (s+1)(s-(1+1))=0

s=—|, or s=I1+1

We need the regular solution that will be
well-behaved as r—0, so take S= I + 1




Series solution (3)

General recursion relation comes from equating coefficients of r to the power p+i

gaprp”l[( p+1+1)(p+!1)—I(l +1)]+2aprp+' | —2c(p+1+1)+2Z|=0

A1 2| k(p+1+1)-2Z]
a, (p+!+2)(p+I+1)-I(1+1)

P

p+1




Series solution (4)

For p—oo we find:
By _ 2| k(p+1+1)-2Z]
ap+1 ) o a,  (p+1+2)(p+1+1)-I(1+1)
P—0
ap P
Compare with: (remember a is coefficient of r P*! in the expansion)
exp(2kr) =) (2’(:) => br" withb, = (2’(') .
n=0 n: n=0 n!

Coefficient of r "™ would beb,, ...

Coefft. of 1”2 By, (27" (p+l+D! 2 2k

Cosfft. of 1" b . (20)" % (p+1+2)! (p+1+2) "~ p

p+l+1

So, our series behaves for large p just like exp(2x«r).



Series solution (5)

So, if the series continues to arbitrarily

large p, the overall solution becomes

x(r)=F(r)exp(-«r)

7(r) 0 exp(2xr) x exp(—«r) = exp(xr)

(not normalizable)

To prevent this the series must terminate after a
finite number of terms. This only happens if

Z .
—=(p+1+1) for someinteger p=0,1,2...
K
=nwherenisapostiveinteger >|:n=1+11+2...
So finally the energy is K2 72 with n > |

[T
I
|
|
|

2 on?

n is known as the principal quantum number.

It defines the “shell structure” of the atom.




Summary of solution so far

Each solution of the time-independent
Schrodinger equation is defined by
three quantum numbers n,l,m

The radial solution depends on
n and | but not m

Wnlm(r) — RnI (r)YIm(ea ¢)
— anr(r)Ym(@, ¢)

- Fn| (r)e—Zr/n
o r YIm (99 ¢)

a

2Z| (p+1+1)-n]

F, () =r"> ar’
p=0

a, n[(p+1+2)(p+1+1)-1(1+1)]

The energy only depends on the
principal quantum number n
which is bigger than |

ZZ
En :—?, n=1,2,3... (n>|)




The hydrogen energy spectrum

1

E —

n

on?

In Hartrees (E, = 27.2eV)

In eV ground state energy
= -13.6eV

= - lonisation energy

This simple formula agrees with
observed spectral line frequencies
to within 6 parts in ten thousand

Traditional spectroscopic nomenclature:

| = 0: sstates (from “sharp spectral lines)
| = 1. p states (“principal™)

| = 2: d states (“diffuse”)

| = 3. f states (“fine”)

...and so on alphabetically (g,h,i... etc)



The energy spectrum: degeneracy

For each value of n = 1,2,3... we have a 2

definite energy: E = —— (in atomic units)
2N

For each value of n, we can have n 1=0.1.2..... n-1

possible values of the total angular
momentum quantum number |

For each value of | and n we can have 2I+1 m= —| _(| _1) 0 (| _1) |
values of the magnetic qguantum number m: : Ty :
The total number of states (statistical weight) n-1 5

associated with a given energy E_ is therefore: (2| +1) =n-.

(This neglects electron spin. See Section 7.) =0

The fact that the energy is independent of m is a feature of all spherically
symmetric systems and hence of all atoms. The independence onlis a
special feature of the Coulomb potential, and hence just of hydrogenic
atoms. This is known as accidental degeneracy.



The radial wavefunctions

R, (r) depends on n and | but not on m

l//nlm(r) = RnI (r)YIm(Ha ¢)
_xa(r) Ry (r)e”'”"
Ry(r) ===

r

Z 3/2
(=2 = —7r/
Ry (r) (aoj exp(—Zr/ &)

1(z Y zr _7r
Rﬂ“:ﬁ(a] (ajex"(a

4 (zY(zrY
0= 7mw) ()
a2z Y, )z
SO S

7z Y2 ozr 2722
=2 = | |1-
Reo(r) (3%] ( 3a0+27a§

|

z Y. zr _7r
Rm‘”zz(a] (1%]%(%}

o
3a,
exp

exp

2

1.5+
I:{10
1k
0.5r

0,

-0.5
0

For atomic units set a; =1

0.4

0.3

0.2r

-0.1




The radial wavefunctions (2)

Ro(r) =2(§]3/2exp(—2r/ao>
=iz (3ol )
o d 2] el
0l () *{)
o) e )E

z V(. 2zr 2772
_o| &£ 1—
Roll) (330) ( 38, 278

exp

exp

Only s states (I = 0) are finite at the origin.

Radial functions have (n-I-1) zeros
(excluding r = 0).

Full wavefunctions are:

Wnlm(r) = RnI (r)YIm(ga ¢)

Normalization chosen so that:

* 252 .
jo drr Rnl(r)_l

Asymptotic solution

Ri(N)—=

> oc "t exp(=2Zr / n)

Solutionnearr=0

I:znl (r) r—0 )OCFI




Radial probability density

. : 2
Total probability density |Wnlm(r) |2: Rfl (r) ‘Ylm (6), ¢)‘ (R, is real)

|l//nlm(r) |2 d3r

= probability of finding particle in a
volume element centred on (r, 6, @)

Integrate over all angles using normalization of spherical harmonics

d’r =rédrdQ

dQ = sSn@dede

(solid angle element)

Radial probability density rzRﬁ(r)dr — J' Rﬁ(r)\\ﬁm(ﬁ,@\zrzdrdﬂ
0.9

r*R3(r)dr = y2 (r)dr

22 = probability of finding the particle in a
[ RnI (r)dr spherical shell centred onr, i.e. at any angle

so this is analogous to the 1D case



Angular probability density

Solid angle probability density

|Y|m (9, ¢) |2 = probability density of finding dQ _ SI n (9d (9d¢

particle in a solid angle element

Ylm(99¢) : dQ =
Y (6,0)f sinodode

= probability of finding particle between
B and 6 + dB and ¢ and ¢ + do

Total probability density

[V (1) F 0% =(r?R3 (r)ar ).(1¥,,(6.¢) [ sin6dodg)

= (Radial probability) x (Angular probability)



Radial probabllity density

Radial probability density

MRy (1)

Orbital | n | |<r> (au) % "l
1s |10 15 &
2s | 20| 60
o | 21| 5.0
3s | 30| 135

<r> - _.d3r W;Im(r)rWnlm(r)

o0

0

::drr3‘Rn|(r)

‘2




Comparison with Bohr model

Bohr model

Angular momentum (about any axis)
assumed to be quantized in units of
Planck’s constant:

L,=nA, n=12,3,...

Electron otherwise moves
according to classical
mechanics and has a single
well-defined orbit with radius

n°a,
Z

=

n

, 8, = Bohr radius

Energy quantized and
determined solely by angular
momentum:

ZZ
E. = ot E., E, =Hartree

Quantum mechanics

Angular momentum (about any axis)
shown to be quantized in units of
Planck’s constant:

L, =mi, m=-I,...,l

Electron wavefunction spread over
all radii. Can show that the
guantum mechanical expectation
value of 1/r satisfies

<%>:nzza0 :%, a, = Bohr radius

n

Energy quantized, but
determined solely by principal
guantum number n, not by
angular momentum:



The remaining approximations

These results are not exact because we have made several approximations.

« We have neglected the motion of the nucleus. To fix this we should replace m,
by the reduced mass p. This improves agreement with experiment by an order of
magnitude (simple formula gives spectral lines to within 4 parts in 100 thousand!)

and E(n)ocm,

2
= E(n) > 1 E(n)=- 1 z >~ E,
1 1+m,/m; )2n

* We have used a non-relativistic treatment of the electron and in particular have
neglected its spin (see §7). Including these effects give rise to
“fine structure”
(from the interaction of the electron’s orbital motion with its spin)
“hyperfine structure”
(from the interaction of the electron’s spin with the nuclear spin)

» We have neglected the fact that the EM field between the nucleus and the
electron is itself a quantum object. This leads to “quantum electrodynamic”
(QED) corrections, and in particular to a small “Lamb shift” of the energy levels.



Summary

Enerqgy levels in au

(n > | ) In Hartrees (E, = 27.2eV)

Ground state energy = -1/2 au = -13.6eV = - ionisation energy

Statistical weight g=

n-1

2I+1

|=O

Wavefunction

l//nlm(r) — RnI (r)YIm

(60,9)

— |:nl (r)e_
I

Yim(6,9)

Radial probability density

R ()

F, (r) = r'*lzaprp
p=0

p+l1

2Z[(p+!+1)-n]

p

n[(p+1+2)(p+1+1)-1(1+1)]




Permissible OQuantum States
| Table7.1

Permissible Values of Quantum Numbers for Atomic Orbitals

Number of
Subshell Orbitals in the
n I m* Notation Subshell
| 0 0 ls 1
Z 0 0 2s |
2 | —1,0,+1 2p 3
3 0 0 3s 1
3 | =1,0, +1 3p 3
3 2 e R e a5 3d 5
4 0 0 4ds |
4 | =10 4p 3
4 2 a0 s I IGS E 4d 5
4 3 =3 =2 =10, 41,42 %3 af 7

*Any one of the m; quantum numbers may be associated with the » and / quantum numbers on the
same line.



Orbital energies of the hydrogen atom.
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Orbital Energies of Multielectron

Atoms

All elements have the same number of
orbitals (s,p, d, and etc.).

In hydrogen these orbitals all have the same
energy.

In other elements there are slight orbital
energy differences as a result of the presence
of other electrons in the atom.

The presence of more than one electron
changes the energy of the electron orbitals
(click here)
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Shape of 2p Orbital
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Shape of 3d Orbitals
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WKB Approximation — Part 1

Dragica Vasileska





Important Applications in which
WKB Approximation is Used

* Tunneling Breakdown in normal diodes
(reverse biased diode)

* Tunnel (Esaki) diode (forward + reverse
bias)

» Scanning Tunneling Microscope
» Gate Leakage





A. Tunneling Breakdown
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Substrate doping (cm’s)

Breakdown voltage and depletion layer width at breakdown versus doping
density of an abrupt one-sided p-n diode. Shown are the voltage and width for a
planar (top curves), cylindrical (middle curves) and spherical (bottom curves)
junction with 1 mm radius of curvature.





Breakdown Mechanisms in a Diode

* Junction breakdown can be due to:

&

¢ tunneling breakdown
+* avalanche breakdown

®

L X 2

e One can determine which mechanism is responsible for
the breakdown based on the value of the breakdown
voltage Vg :

“ Vpp <4E,/q — tunneling breakdown
“* Vpp > 6E,/q — avalanche breakdown

“ 4E,/q <Vpp <6E,/q — both tunneling and
avalanche mechanisms are responsible





Tunneling breakdown occurs in heavily-doped pn-
junctions in which the depletion region width I 1s about
10 nm.

Zero-bias band diagram: Forward-bias band diagram:






Reverse-bias band diagram:

* Tunneling current (obtained by
using WKB approximation):

qu VA [ 4v2m*E2/2]
Xp —

I, =
4’ n’E,)” 3hgF,,

t

F_. > average electric field in
the junction

 The critical voltage for
tunneling breakdown, Vg, 1s
estimated from:

I, (Vgg) < 101

e With T\, Eg¢ and 1A .





B. Tunnel (Esaki) Diode

Leo Esaki

QUANTUM MECHANICAL TUNNELING

{A wave phenomenon.)







(Esaki) Tunnel Diode (TD)

Simplest tunneling device
Heavily-doped pn junction

— Leads to overlap of conduction and valence
bands

Carriers are able to tunnel inter-band

Tunneling goes exponentially with
tunneling distance

— Requires junction to be abrupt





Band-to-Band Tunneling in a

Tunnel Diode
., ()

.(e)

(b) (d)






Figures of Merit

Peak current — | Peak-to-Valley Ratio (PVR)
100 kA/cm? -






Direct vs. Indirect Tunneling
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Tunnel Current Expressions





C. Scanning Tunneling Microscope

revolution of tunnelling: Scanning Tunnelling Microscope

- STM







Gate Leakage

gate leakage
tunnelling current
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Gate Leakage

® For sub-micrometer devices, due to smaller oxide thickness, there is
significant conductance being measured on the gate contact. The finite
gate current gives rise to the following effects:

< Negative => degradation in the device operating characteristics with
time due to oxide charging; larger off-state power dissipation

< Positive => non-volatile memories utilize the gate current to program
and erase charge on the “floating contact” — FLASH, FLOTOX,
EEPROM

® There are two different types of conduction mechanisms to the insulator
layer:

< Tunneling: Fowler-Nordheim or direct tunneling process

<> Hot-carrier injection: lucky electron model or Concannon model

T~

Electron is emitted into the oxide « Similar to the lucky electron model, but
when it gains sufficient energy to assumes non-Maxwellian high energy tail on
overcome the insulator/semicon- the distribution function.
ductor barrier * Requires solution of the energy balance

- equation for carrier temperature.






Tunneling Currents

® Three types of tunneling processes are schematically shown below
(courtesy of D. K. Schroder)

‘. T A v Vox<¢%
] JL . 4y
A2

FN FN/Direct Direct

« Fort, >40 A, Fowler-Nordheim (FN) tunneling dominates
- Fort, <40 A, direct tunneling becomes important
- 1|, >l atagiven V_, when direct tunneling active

» For given electric field: - I, independent of oxide thickness
- 1, depends on oxide thickness

r





Significance of Gate Leakage

© As oxide thickness decreases, the gate current becomes more

important. It eventually dominates the off-state leakage current (/; at
Vo=0V)

© The drain current /, as a function of technology generation is shown
below (courtesy of D. K. Schroder)
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FowIer-Nordhelm Tunnelmg

(DB
v EF
No applied bias With applied bias

® The difference between the Fermi level and the top of the barrier is
denoted by @4

® According to WKB approximation, the tunneling coefficient through this
triangular barrier equals to:

T ocexp{ Zh((x)dx} where: Y(x)= \/

2m”<

(®p —eEx)





Fowler-Nordheim Tunneling

® The final expression for the

Fowler-Nordheim tunneling
coefficient is:

4 2m Y ?
3eEh

T oc exp| —

® Important notes:

 The above expression
explains tunneling process
only qualitatively because
the additional attraction of
the electron back to the plate
is not included

 Due to surface
imperfections, the surface
field changes and can make
large difference in the results

ntpoly-Si ."Si.O.z f n-Sh
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V (V)

Calculated and experimental tunnel
current characteristics for ultra-thin oxide
layers.

(M. Depas et al., Solid State Electronics, Vol.
38, No. 8, pp. 1465-1471, 1995)





