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Importance of Hydrogen Atom

� Hydrogen is the simplest atom
� The quantum numbers used to characterize the allowed 

states of hydrogen can also be used to describe 
(approximately) the allowed states of more complex 
atoms
� This enables us to understand the periodic table

� The hydrogen atom is an ideal system for performing 
precise comparisons of theory and experiment
� Also for improving our understanding of atomic 

structure
� Much of what we know about the hydrogen atom can be 

extended to other single-electron ions 
� For example, He+ and Li2+



Early Models of the Atom

� J.J. Thomson�s model of 
the atom 
� A volume of positive 

charge
� Electrons embedded 

throughout the volume
� A change from Newton�s 

model of the atom as a 
tiny, hard, indestructible 
sphere

�watermelon� model



Experimental tests

Expect:

1. Mostly small 
angle scattering

2. No backward 
scattering events

Results:

1. Mostly small 
scattering events

2. Several 
backward 
scatterings!!!



Early Models of the Atom

� Rutherford�s model

� Planetary model
� Based on results of 

thin foil experiments
� Positive charge is 

concentrated in the 
center of the atom, 
called the nucleus

� Electrons orbit the 
nucleus like planets 
orbit the sun



Problem: Rutherford�s model

The �size� of the atom in Rutherford�s model is about 1.0 × 10�10 m. 
(a) Determine the attractive electrical force between an electron 
and a proton separated by this distance. 
(b) Determine (in eV) the electrical potential energy of the atom.



The �size� of the atom in Rutherford�s model is about 1.0 × 10�10 m. (a) Determine the 
attractive electrical force between an electron and a proton separated by this 
distance. (b) Determine (in eV) the electrical potential energy of the atom.

Given:

r = 1.0 × 10�10 m

Find:

(a) F = ?
(b) PE = ?

Electron and proton interact via the Coulomb force
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Difficulties with the Rutherford 
Model

� Atoms emit certain discrete characteristic frequencies of 
electromagnetic radiation
� The Rutherford model is unable to explain this 

phenomena

� Rutherford�s electrons are undergoing a centripetal 
acceleration and so should radiate electromagnetic 
waves of the same frequency
� The radius should steadily decrease as this radiation 

is given off
� The electron should eventually spiral into the nucleus
� It doesn�t



Emission Spectra
� A gas at low pressure has a voltage applied to it
� A gas emits light characteristic of the gas
� When the emitted light is analyzed with a spectrometer, a series of 

discrete bright lines is observed
� Each line has a different wavelength and color
� This series of lines is called an emission spectrum



Emission Spectrum of Hydrogen 

� The wavelengths of hydrogen�s spectral lines can be found from

� RH is the Rydberg constant
� RH = 1.0973732 x 107 m-1

� n is an integer, n = 1, 2, 3, �
� The spectral lines correspond to 

different values of n
� A.k.a. Balmer series
� Examples of spectral lines

� n = 3, ë = 656.3 nm
� n = 4, ë = 486.1 nm
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Absorption Spectra

� An element can also absorb light at specific wavelengths
� An absorption spectrum can be obtained by passing a 

continuous radiation spectrum through a vapor of the 
gas

� The absorption spectrum consists of a series of dark 
lines superimposed on the otherwise continuous 
spectrum
� The dark lines of the absorption spectrum coincide 

with the bright lines of the emission spectrum



Applications of Absorption 
Spectrum

� The continuous spectrum emitted by the Sun passes 
through the cooler gases of the Sun�s atmosphere
� The various absorption lines can be used to identify 

elements in the solar atmosphere
� Led to the discovery of helium



Recall Bohr�s Assumptions

� Only certain electron orbits are stable. Radiation is 
emitted by the atom when the electron �jumps� from a 
more energetic initial state to a lower state

� The size of the allowed electron orbits is determined by a 
condition imposed on the electron�s orbital angular 
momentum

i fE E hf 
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Why is that?



Modifications of the Bohr 
Theory � Elliptical Orbits

� Sommerfeld extended the results to include 
elliptical orbits
� Retained the principle quantum number, n
� Added the orbital quantum number, ℓ
� ℓ ranges from 0 to n-1 in integer steps

� All states with the same principle quantum 
number are said to form a shell

� The states with given values of n and ℓ are 
said to form a subshell



Modifications of the Bohr Theory �
Zeeman Effect and fine structure

� Another modification was needed to account for the Zeeman effect
� The Zeeman effect is the splitting of spectral lines in a strong

magnetic field
� This indicates that the energy of an electron is slightly modified 

when the atom is immersed in a magnetic field
� A new quantum number, m ℓ, called the orbital magnetic quantum 

number, had to be introduced
� m ℓ can vary from - ℓ to + ℓ in integer steps

� High resolution spectrometers show that spectral lines are, in fact, two 
very closely spaced lines, even in the absence of a magnetic field
� This splitting is called fine structure
� Another quantum number, ms, called the spin magnetic quantum 

number, was introduced to explain the fine structure



de Broglie Waves

� One of Bohr�s postulates was the angular momentum of 
the electron is quantized, but there was no explanation 
why the restriction occurred

� de Broglie assumed that the electron orbit would be 
stable only if it contained an integral number of electron 
wavelengths



de Broglie Waves in the 
Hydrogen Atom

� In this example, three 
complete wavelengths are 
contained in the 
circumference of the orbit

� In general, the circumference 
must equal some integer 
number of wavelengths
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This was the first convincing argument that the wave nature of This was the first convincing argument that the wave nature of 
matter was at the heart of the behavior of atomic systemsmatter was at the heart of the behavior of atomic systems



Quantum Mechanics and the 
Hydrogen Atom

� One of the first great achievements of quantum 
mechanics was the solution of the wave 
equation for the hydrogen atom

� The significance of quantum mechanics is that 
the quantum numbers and the restrictions 
placed on their values arise directly from the 
mathematics and not from any assumptions 
made to make the theory agree with 
experiments



Problem: wavelength of the 
electron

Determine the wavelength of an electron in Determine the wavelength of an electron in 
the third excited orbit of the hydrogen the third excited orbit of the hydrogen 
atom, with atom, with n n = 4.= 4.



Determine the wavelength of an electron in the third excited orbit of the hydrogen 
atom, with n = 4.

Given:

n = 4

Find:

e = ?

Recall that de Broglie�s wavelength of electron 
depends on its momentum, = h/(mev). Let us find it,
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Quantum Number Summary

� The values of n can increase from 1 in integer steps
� The values of ℓ can range from 0 to n-1 in integer steps
� The values of m ℓ can range from -ℓ to ℓ in integer steps



Spin Magnetic Quantum 
Number

� It is convenient to think of 
the electron as spinning 
on its axis
� The electron is not

physically spinning
� There are two directions 

for the spin
� Spin up, ms = ½
� Spin down, ms = -½

� There is a slight energy 
difference between the 
two spins and this 
accounts for the Zeeman 
effect



Electron Clouds

� The graph shows the 
solution to the wave 
equation for hydrogen in 
the ground state
� The curve peaks at the 

Bohr radius
� The electron is not 

confined to a particular 
orbital distance from 
the nucleus

� The probability of finding 
the electron at the Bohr 
radius is a maximum



Electron Clouds

� The wave function for 
hydrogen in the ground 
state is symmetric
� The electron can be 

found in a spherical 
region surrounding the 
nucleus

� The result is interpreted 
by viewing the electron 
as a cloud surrounding 
the nucleus
� The densest regions of 

the cloud represent 
the highest probability 
for finding the electron





Roadmap for solution of Hydrogen-like atoms

� Start from 3D TISE for electron in Coulomb potential of nucleus

� Separate variables to give 1D radial problem and angular problem
Solution of angular part already known
in terms of spherical harmonics.

� Simplify 1D radial problem using substitutions and atomic units

� Solve radial problem
Extract asymptotic solution at large r
Use Frobenius method
Find eigenvalues by requiring normalizable solutions

Mathematical Details



Reminder: SE in three 
dimensions

Wavefunction and potential energy are now 
functions of three spatial coordinates:

Kinetic energy involves three
components of momentum

Interpretation of 
wavefunction: 
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Time-independent Schrödinger equation

H-atom is our first example of the 3D Schrödinger equation
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The Hamiltonian for a hydrogenic atom
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In a hydrogenic atom or ion with nuclear 
charge +Ze there is the Coulomb 
attraction between electron and nucleus. 
This has spherical symmetry � potential 
only depends on r. This is known as a 
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Hamiltonian for hydrogenic atoms
The natural coordinate system is spherical polars.  In 
this case the Laplacian operator becomes (see 2B72):
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So we will look for a solution of the form 

CONCLUSIONS 

� The angular momentum about any axis and the total 
angular momentum commute with the Hamiltonian 

� They are therefore both conserved quantities

� We can have simultaneous eigenfunctions of these 
operators and the Hamiltonian

� We can have well-defined values of these quantities and 
the energy at the same time
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The angular wavefunction

The angular part are the eigenfunctions of the total angular momentum operator 
L2. These are the spherical harmonics, so we already know the corresponding 
eigenvalues and eigenfunctions (see §5):

Note: this argument works for any spherically-symmetric 
potential V(r), not just the Coulomb potential.
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l = principal angular momentum quantum number.

m = magnetic quantum number (2l+1 possible values).
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The radial equation
Substitute separated solution into the time-independent Schrödinger equation
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Note that this depends on l but not on m: R(r) and E therefore involve 
the magnitude of the angular momentum but not its orientation.



The radial equation (2)

Define a new radial 
function ÷(r) by:

( )
( )

r
R r

r




2 2 2
2

2 2
0

( 1)

2 2 4

d dR l l Ze
r R R ER

mr dr dr mr r

 
    

 

 

2 2 2 2

2 2
0

( 1)

2 2 4

d l l Ze
E

m dr mr r


 



 
    

 

 
Get radial equation for ÷(r)



The effective potential
New radial equation looks like the 
1D Schrödinger equation with an 
effective potential
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Where does the centrifugal barrier come from? 
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Alternatively, we can say that the energy required to supply the extra
angular speed must come from the radial motion so this decreases as
if a corresponding outward force was being applied.

For circular motion

CLASSICAL ARGUMENT

Fixed l corresponds to fixed angular momentum for the electron.
so as r becomes small,    must increase in order to maintain L. This causes an 
increase in the apparent outward force (the �centrifugal� force).
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� Simplify equation using atomic units

� Solve equation in the asymptotic limit (large r)
Gives a decaying exponential solution

� Define new radial function by factoring out asymptotic solution

� Solve equation for F(r) using the series (Frobenius) method

� Find that solution is not normalizable unless series terminates.
This only happens if the eigenvalues have certain special values.
Hence we find the eigenvalues and eigenstates of the H-atom.

Roadmap for solution of radial equation
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Atomic units
There are a lot of physical constants in these expressions.  It makes atomic 
problems simpler to adopt a system of units in which as many as possible of 
these constants are one.  In atomic units we set:
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Asymptotic solution of 
radial equation (large r)

( ) ( ) exp( )r F r r  

Consider the radial equation at very large 
distances from the nucleus, when both terms 
in the effective potential can be neglected.  
We are looking for bound states of the atom 
where the electron does not have enough 
energy to escape to infinity (i.e. E < 0):

Inspired by this, rewrite the solution in terms 
of yet another unknown function, F(r):
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For normalizable solutions we must take the decaying solution

This gives



Differential equation for F

Derive equation for F
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Series solution (1)
Look for a power-series solution (Frobenius method).  The point r = 0 is a 
regular singular point of the equation so at least one well-behaved series 
solution should exist (see 2B72).
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Series solution (2)
The indicial equation that fixes s comes from equating coefficients of 
the lowest power of r which is s - 2

We need the regular solution that will be 
well-behaved as r→0, so take
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Series solution (3)

      1

0 0

1 1 2 1 2 0p l p l
p p

p p

a r p l p l l l a r p l Z
 

  

 

                 

 

     
1 2 1

2 1 1
p

p

p l Za

a p l p l l l




    


     

General recursion relation comes from equating coefficients of r to the power p+l



Series solution (4)
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Coefft. of (2 ) ( 2)! ( 2)

n n
n

n n
n n

p l
p l

p l p l
p l

pp l p l
p l

r
r b r b

n n

r b

br p l

r b p l p l p

 


  



 

 

 

 

   
 

   

 

  

 
    

   

 

For p→∞ we find:

Compare with: 1(remember  is coefficient of  in the expansion)p l
pa r  

So, our series behaves for large p just like exp(2êr).
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Series solution (5)

( 1) for some integer 0,1,2

 where  is a positive integer : 1, 2

Z
p l p

n n l n l l

   

    





To prevent this the series must terminate after a 
finite number of terms.  This only happens if

So finally the energy is

So, if the series continues to arbitrarily 
large p, the overall solution becomes 

( ) exp(2 ) exp( ) exp( )r r r r     

n is known as the principal quantum number.
It defines the �shell structure� of the atom.

(not normalizable)

2 2

22 2

Z
E

n


   

( ) ( ) exp( )r F r r  

with n > l
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Z
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n
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Each solution of the time-independent 
Schrödinger equation is defined by 
three quantum numbers n,l,m

Summary of solution so far

The energy only depends on the 
principal quantum number n 
which is bigger than l

The radial solution depends on 
n and l but not m



1        0

2        0,1

3        0,1, 2

n l

n l

n l

 

 

 

2

1

2nE
n

 

In eV ground state energy
= -13.6eV
= - ionisation energy

Traditional spectroscopic nomenclature:
l = 0: s states (from �sharp� spectral lines)
l = 1: p states (�principal�)
l = 2: d states (�diffuse�)
l = 3: f states (�fine�)
�and so on alphabetically (g,h,i� etc)

The hydrogen energy spectrum

n > l so

 In Hartrees 27.2eVhE 

This simple formula agrees with 
observed spectral line frequencies 
to within 6 parts in ten thousand



The energy spectrum: degeneracy

2

2
 (in atomic units)

2n

Z
E

n
 

, ( 1), 0, ( 1),m l l l l     

1
2

0

(2 1) .
n

l

l n




 

For each value of n = 1,2,3� we have a 
definite energy:

For each value of n, we can have n
possible values of the total angular 
momentum quantum number l:

For each value of l and n we can have 2l+1 
values of the magnetic quantum number m:

l = 0, 1, 2,�, n-1

The total number of states (statistical weight) 
associated with a given energy En is therefore: 
(This neglects electron spin. See Section 7.)

The fact that the energy is independent of m is a feature of all spherically 
symmetric systems and hence of all atoms. The independence on l is a 
special feature of the Coulomb potential, and hence just of hydrogenic 
atoms. This is known as accidental degeneracy.



The radial wavefunctions
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Rnl(r) depends on n and l but not on m
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For atomic units set a0 = 1



The radial wavefunctions (2)

Full wavefunctions are:

Normalization chosen so that:

Only s states (l = 0) are finite at the origin.

Radial functions have (n-l-1) zeros 
(excluding r = 0).

( ) ( ) ( )nlm nl lmR r Y   r

Asymptotic solution
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Solution near r = 0

0
( ) l

nl r
R r r




 2 2

0
1

nl
drr R r





3/ 2

10 0
0

3/ 2

21
0 0 0

3/ 2

20
0 0 0

3/ 2 2

32
0 0 0

3/

31
0

( ) 2 exp( / )

1
( ) exp

2 23

( ) 2 1 exp
2 2 2

4
( ) exp

3 327 10

4 2
( )

9 3

Z
R r Zr a

a

Z Zr Zr
R r

a a a

Z Zr Zr
R r

a a a

Z Zr Zr
R r

a a a

Z
R r

a

 
  

 

     
      

     

     
      

     

     
      

     

 
  

 

2

0 0 0

3/ 2 2 2

30 2
0 0 0 0

1 exp
6 3

2 2
( ) 2 1 exp

3 3 27 3

Zr Zr Zr

a a a

Z Zr Z r Zr
R r

a a a a

    
    

    

     
       

     



Total probability density 22 2| ( ) | ( ) ( )nlm nl lmR r Y   r

22 2 2 2

,

( ) ( ) ( )nl nl lmr R r dr R r Y r drd
 

   

= probability of finding particle in a
volume element centred on (r, è, ö)

Radial probability density

= probability of finding the particle in a
spherical shell centred on r, i.e. at any angle

3 2d r drd r sind d d   

2 3| ( ) |nlm d r r

2 2 ( )nlr R r dr

(solid angle element)

Integrate over all angles using normalization of spherical harmonics

2 2 2( ) ( )nl nlr R r dr r dr so this is analogous to the 1D case

(Rnl is real)

Radial probability density



Total probability density
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Solid angle probability density

= probability density of finding 
particle in a solid angle element sind d d   

2| ( ) |lmY  
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

= probability of finding particle between
è and è + dè and ö and ö + dö

= (Radial probability) x (Angular probability)

Angular probability density
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Comparison with Bohr model

,  1, 2,3,zL n n  
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0,  Bohr radiusn

n a
r a

Z
 

Angular momentum (about any axis) 
assumed to be quantized in units of  
Planck�s constant:

Electron otherwise moves 
according to classical 
mechanics and has a single 
well-defined orbit with radius

Energy quantized and 
determined solely by angular 
momentum:

Bohr model Quantum mechanics

2

2
,  Hartree

2n h h

Z
E E E

n
  

,  , ,zL m m l l   

02
0

1 1 ,  Bohr radius
n

Z
ar rn a
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2

2
,  Hartree

2n h h

Z
E E E

n
  

Angular momentum (about any axis) 
shown to be quantized in units of  
Planck�s constant:

Energy quantized, but 
determined solely by principal 
quantum number n, not by 
angular momentum:

Electron wavefunction spread over 
all radii. Can show that the 
quantum mechanical expectation 
value of 1/r satisfies



These results are not exact because we have made several approximations.

� We have neglected the motion of the nucleus.  To fix this we should replace me
by the reduced mass ì. This improves agreement with experiment by an order of 
magnitude (simple formula gives spectral lines to within 4 parts in 100 thousand!)

� We have used a non-relativistic treatment of the electron and in particular have 
neglected its spin (see §7).  Including these effects give rise to 

�fine structure�
(from the interaction of the electron�s orbital motion with its spin)

�hyperfine structure�
(from the interaction of the electron�s spin with the nuclear spin) 

� We have neglected the fact that the EM field between the nucleus and the 
electron is itself a quantum object.  This leads to �quantum electrodynamic�
(QED) corrections, and in particular to a small �Lamb shift� of the energy levels.

The remaining approximations
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Ground state energy = -1/2 au = -13.6eV = - ionisation energy
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Permissible Quantum States



Orbital energies of the hydrogen atom.



Orbital Energies of Multielectron
Atoms

� All elements have the same number of 
orbitals (s,p, d, and etc.).  

� In hydrogen these orbitals all have the same 
energy.  

� In other elements there are slight orbital 
energy differences as a result of the presence 
of other electrons in the atom.  

� The presence of more than one electron 
changes the energy of the electron orbitals
(click here)

orbitalenergies_01_ui.mov


Shape of 1s Orbital



Shape of 2p Orbital



Shape of 3d Orbitals
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