Semiconductor Device Theory: Basic Operation of a PN Diode – Theoretical Exercise

Dragica Vasileska and Gerhard Klimeck (ASU, Purdue)

- 1. A silicon *pn*-junction has a resistivity of 0.1 Ωcm and 2 Ωcm for the uniformly-doped *p* and *n* sections, respectively. If $\mu_n=1500 \ cm^2/V$ -s, $\mu_p=450 \ cm^2/V$ -s, and $n_i=1.45\times10^{10} \ cm^{-3}$ at room temperature:
 - (a) Calculate the built-in voltage of the junction.
 - (b) Calculate the diode saturation current at room temperature ($\tau_n=15 \ \mu s$, $\tau_p=50 \ \mu s$, $A=0.05 \ cm^2$).
 - (c) Calculate and plot the temperature dependence of the saturation current, neglecting for simplicity the temperature dependence of mobility (E_g =1.12 eV for Si).
- 2. Consider a *pn*-junction diode. The concentration of holes in the *n*-section of the device is described by the continuity equation

$$D_p \frac{d^2 p_n}{dx^2} - \frac{p_n - p_{n0}}{\tau_p} = 0$$

The concentration of shallow ionized donors in the *n*-section is equal to 10^{15} cm^{-3} . The intrinsic carrier concentration is 10^{10} cm^{-3} . The forward voltage applied to the diode is 0.5 V. Assuming that the length of the *n*-section, L, is much smaller than the diffusion length L_p , calculate and sketch the hole distribution in the *n*-section of the device. Also, assuming that $D_p=12 \text{ cm}^2/s$ and the lifetime $\tau_p=1 \mu s$, how short does the *n*-section have to be to satisfy the condition that $L \ll L_p$ (use $L = L_p / 10$ as a criterion)?

- 3. Find the total charge of electrons injected into the p-region of a n^+p silicon diode as a function of the bias voltage *V*. Doping density of the *p*-region is N_A , intrinsic carrier concentration is n_i , and the diode temperature is *T*. The length of the *p*-region is *L*, and the diffusion length of electrons in the *p*-region is L_n . Consider three cases:
 - (a) Arbitrary relation between L and L_n .
 - (b) $L >> L_n$.
 - (c) $L \ll L_n$.

Assume that at the contacts, $n=n_{p0}$, where n_{p0} is the equilibrium concentration of electrons.

4. The forward *IV*-characteristics of a *pn*-diode are shown in the figure below.

- (a) Explain the origins for the deviation of the measured *IV*-characteristics from the ideal model predictions.
- (b) Calculate the series resistance of the diode. Explain how you arrived at your answer.

- 5. Consider a p^+ -n- n^+ diode shown in the figure below. The doping of the three different regions, clearly illustrated on the figure, is $N_A = N_{D2} = 10^{20}$ cm⁻³ and $N_{DI} = 10^{16}$ cm⁻³. The breakdown voltage for this diode is defined as being equal to the applied bias for which the maximum electric field reaches the critical field $E_{crit} = 2.5 \times 10^5$ V/cm.
 - (a) Calculate the breakdown voltage for the diode when $L=20 \mu m$. Sketch the electric field profile for this case.
 - (b) How will the magnitude of the breakdown voltage change if L is reduced to 0.5 μ m. Explain qualitatively your reasoning. No actual calculation is needed for this case.

The intrinsic carrier concentration is $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$ and the semiconductor permittivity equals to $k_s \varepsilon_0 = 1.05 \times 10^{-10} \text{ F/m}.$

