

Optical Imaging Chapter 6 – Interferometry

Gabriel Popescu

University of Illinois at Urbana-Champaign Beckman Institute

Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu

6.1 Superposition of Fields

- Interference is the phenomenon by which electromagnetic fields interact with one another.
- Interferometry has various applications from the movement of charge to spectroscopy and material characterization.
- Interference is the result of the <u>superposition principle</u>

$$\overline{E}[\overline{r},t] = \sum_{j} \overline{E}_{j}[\overline{r},t]$$
(6.1)

Intensity is the measurable quantity

$$\overline{I}[\overline{r},t] = \left\langle \left| E[r,t] \right|^2 \right\rangle \tag{6.2}$$

• Where $\langle \rangle$ stands for time (or ensemble) average

6.1 Superposition of Fields

- Consider 2 fields \overline{E}_1 and \overline{E}_2 $\overline{I}[\overline{r},t] = \langle |E_1|^2 \rangle + \langle |E_2|^2 \rangle + \langle |E_1 \cdot E_2^*| \rangle + \langle |E_1^* \cdot E_2| \rangle$ (6.3)
- Notes:
 - the dot product $E_1 \cdot E_2^*$
 - Polarization is critical
 - Parallel polarization offers the most interference
 - $|E_1 \cdot E_2| = |E_1||E_2|\cos\alpha$
 - Assume parallel polarization $=>I = I_1 + I_2 + 2|E_1||E_2|\cos[\Delta\phi[\overline{r},\tau]] \quad (6.4)$
 - $\Delta \phi$ is generally a random variable
 - For uncorrelated (incoherent) fields $\langle \cos[\Delta \phi] \rangle \rightarrow 0 \Rightarrow \text{simplest case}$ is a monochromatic field because it is fully coherent.

6.2 Monochromatic Fields

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cdot \cos[\omega_0 \tau + \Delta \phi]$$

$$T = \text{Time difference} \qquad I \uparrow \land \land \land \land \land$$
(6.5)

 ϕ = The phase shift

 ω_0 = Frequency

• Fringe contrast (visibility): $\gamma = \frac{I_{\text{max}} - I_{min}}{I_{\text{max}} + I_{min}}$ (6.6)

$$\Rightarrow \gamma = \frac{I_1 + I_2 + 2\sqrt{I_1I_2} \cdot 1 - I_1 - I_2 - 2\sqrt{I_1I_2} \cdot (-1)}{2(I_1 + I_2)} = \frac{2\sqrt{I_1I_2}}{I_1 + I_2} \in (1:0)$$

•
$$I_1 = I_2 \implies \gamma = 1$$

6.2 Monochromatic Fields

(6.7)

• For
$$I_1 = I_2 = I$$
:

$$I = 2I(1 + \cos[\omega_0 \tau])$$

Practical Advantages of Interference:

a) Interference term is $2\sqrt{I_1I_2} \cos[\Delta\phi]$ so if I_1 is too small to be measured directly then I_2 can act as an <u>amplifier</u>. I_1I_2 gives <u>a higher sensitivity</u>

6.2 Monochromatic Fields

Practical Advantages of Interference:

b) Interference ~ $\sqrt{I_1I_2}$ => if I_1 is divided by 100, interference is divided by 10 => high dynamic range

c) Imagine we frequency shift E_1 by $\Delta \omega = \omega_1 - \omega_2 \Rightarrow \sqrt{I_1 I_2} \cdot \cos[\omega_1 t - \omega_2 t] \sim \cos[\Delta \omega t]$

 \Rightarrow can tune $\triangle \omega$ to high frequency (> 1 kHz) \Rightarrow Low Noise

 Interference is obtained between different portions of the same wavefront (next: amplitude-division)

- Young Interferometer
 - The oldest interferometer

 $\| \mathbf{x} \times (\mathbf{x} + \mathbf{y}) \rangle = \langle \mathbf{x} \times (\mathbf{y} + \mathbf{y}) \rangle$

• Small Slits
$$\stackrel{z}{\rightarrow}$$
 1° δ -functions: $\delta[y - \frac{d}{2}]; \delta[y + \frac{d}{2}];$

The field at the plane x=0

$$E = E_1 + E_2 = E_0(\delta[y - \frac{d}{2}] + \delta[y + \frac{d}{2}])$$
(6.8)

 Assume the observation plane is in the for zone => Fraunhoffer diffraction (Fourier)

$$E[q_{y}] = \Im[E[y]] = E_{0}[e^{ig_{y}\frac{d}{2}} + e^{-ig_{y}\frac{d}{2}}] = E_{0} \cdot 2\cos[q_{y}\frac{d}{2}] \quad (6.9)$$

• Remember $q_{y} = \frac{y'}{\lambda z}$ (chapter 3)

• Fringes
$$\rightarrow \cos[\frac{d}{2\lambda z} \cdot y']$$
 (6.10)

Similarity relationship again:

 <u>Note</u>: using Fourier it is easy to generalize to arbitrary slit/particle shape; similar to scattering from ensemble of particles (chapter 5, pp 12) => use convolution to express the arbitrary shape.

We can use convolution to express arbitrary shape:

Other Wavefront-Division Interferometers

- Image S thru M₁ and M₂
- \rightarrow virtual sources S₁ and S₂
- \rightarrow S₁ and S₂ act as Young's pinholes
- \rightarrow same equations
- → S1 and S2 are derived from the same sources and therefore coherent

b) Lloyd's Mirror

• S and $S' \rightarrow$ Young

c) Thin films:

d) Newton's rings:

Localized on the surface of lens

• Films of oil break the white light into colors due to interference and phase = $f(\lambda)$

 Interference is obtained by replicating the wavefront=>less amplitude in each beam.

- Very sensitive to path length differences between 'arms'
- Eg. It has been used to measure pressure in rarefied gases(place cell on one arm-> produce $\Delta \phi$

- BS- beam splitter
 - assume <u>thin</u> for now!
- Let L₁, L₂ be the lengths of the 2 areas
 => The intensity at the detector:

$$I(\Delta L) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(2\pi \frac{\Delta L}{\lambda})$$
(6.11)

Note: $\Delta L = L_2 - L_1 = C(t_2 - t_1) = C\tau$ $\tau = \text{time delay} \Rightarrow \cos(\omega\tau)$

 We'll come back to Michelson with low-coherence light, temporal coherence, OCT, etc

- Other amplitude-division interferometry
- a) Plane parallel plate \rightarrow reflection.

• inter-fringe = $f(n,d) \rightarrow$ metrology

b) Plane parallel plate- transmission.

n

 Note: With plane wave incident, fringes are localized at infinity => Need lens

d

c) <u>Fizeau Interferometer:</u>

Used to test mirrors and other surfaces.

d) Mach-Zender Interferometer

- Very Common
- Shear interferometry
- \rightarrow Tilt one mirror
- \rightarrow Fringes \rightarrow analysis of surfaces

6.5 Multiple Beam Interference Reflection Lens Fabny-Penot interferometry d $\frac{\mathrm{I}^{(r)}}{I^{(i)}} = \frac{F\sin^2\frac{\delta}{2}}{1+F\sin^2\frac{\delta}{2}};$ $I^{(t)} = I^{(t)} - I^{(r)}$ $F = \frac{4R}{\left(1 - R\right)^2} \Longrightarrow \text{Finess coeff.}$ (6.12) Transmission $\delta = 2k_0 d \cdot n \cdot \cos \theta \Rightarrow$ one pass phase shift

Chapter 6: Interferometry

6.5 Multiple Beam Interference

Transmitted Intensity

- R_1 , $R_2 \rightarrow$ reflectivities
- R increases \rightarrow narrower lines
- i.e. More reflection orders
- participate in interference
- In practice, Fabny-Perot gave accurate information about spectral lines(also called etalon)

6.6 Interference with Partially Coherent Light

- So far, we assumed monochromatic light = fully coherent.
- What happens when an arbitrary, broad-band, extended source is used for interference?
 - a) michelson interferometry

- The contrast of the fringe is decreasing
- i.e. limited temporal coherence.

6.6 Interference with Partially Coherent Light

b) Young Interferometer :

- Coherence defines the degree of correlation between fields:
 - Typical correlation at one point in space (typical coherence)
 - Temporal correlation between fields at two points (spatial
 - Given A^{her} field at one point $E(\overline{r}, t)$, the mutual coherence function is:

$$\Gamma(\tau) = \langle E(t) \cdot E^*(t+\tau) \rangle_t$$

$$= \int_{-\infty}^{\infty} E(t) \cdot E^*(t+\tau) dt = \text{autocorrelation function}$$
(6.13)

• Note:
$$\Gamma(0) = \left\langle \left| E(t) \right|^2 \right\rangle$$
 (6.14)
= I \Rightarrow irradiance

• So
$$\Gamma = E \otimes E$$

Appl y again the correlation theorem (Eq 2.30)

$$\Im[\Gamma] = \tilde{E}(\omega)\tilde{E}^{*}(\omega) = \left|\tilde{E}(\omega)\right|^{2}$$

$$= S(\omega) = \text{Spectrum} \implies \text{FTIR}$$
(6.15)

So, the autocorrelation function Γ(τ) relates to the optical spectrum of the field:

$$\Gamma(\tau) = \int_{0}^{\infty} S(\omega) \cdot e^{-i\omega\tau} d\omega \qquad \text{Wiener-Kintchin theorem.} \tag{6.16}$$

- I Compare 6.16 with 5.28
- ! It applies even when E(t) does not have a Fourier Transform
- Typically, spectrum is centered on ω_0
- Assume spectrum is $S(\omega \omega_0)$; apply shift theorem (Eq 2.31)

$$\Rightarrow \Gamma(\tau) = \left| \Gamma(\tau) \right| \cdot e^{i\omega_0 \tau}, \tag{6.17a}$$

where
$$|\Gamma(\tau)| = \int_{-\omega_0}^{\infty} S(u) \cdot e^{iu\tau} du; \ u = \omega - \omega_0$$
 (6.17b)

Complex degree of coherence

$$\gamma(\tau) = \frac{\Gamma(\tau)}{\Gamma(0)} \in \mathbb{C} \quad (6.18) \quad \Longrightarrow \left| \gamma(\tau) \right| \in (0;1) \quad (6.19)$$

Measuring the temporal coherence: Michelson interferometer

• $I_{1,2}$ can be measured separately \rightarrow access to $\operatorname{Re}(\Gamma)$ directly, by moving M_2 $\operatorname{Re}[\Gamma(\tau)]_{\wedge}$

 $\hat{\mathbf{M}}$

 ω_0

The degree of coherence Spectral width $S(\omega)$ $|\gamma(\tau)|$ $\Delta \omega$ \mathcal{T}_{c} Ó $\tau_c =$ coherence time Coherence Length: \equiv width of $|\gamma(\tau)|$ $l_c = C \cdot \tau_c$ (6.23)Rule of thumb: $\Gamma(\tau) = \Im[S(\omega)]$ $\Rightarrow \Delta \omega \cdot \tau_c = \text{constant} \quad (6.22) \qquad l_c = \frac{\lambda_0^2}{\Lambda^2} \quad (6.24)$ $\lambda_{0} = c \cdot T = c \cdot \frac{2\pi}{\omega_{0}}; \Delta \lambda = \Delta(\frac{2\pi c}{\omega}) = 2\pi c \frac{\Delta \omega}{\omega^{2}} = \lambda \frac{\Delta \omega}{\omega} \Longrightarrow \frac{\Delta \lambda}{\lambda} = \frac{\Delta \omega}{\omega}$ Interference occurs only if $\Delta L = l_{c}$ Broad spectrum($\Delta \lambda = 100 nm$) => short $l_c (\cong 2 - 3 \mu m)$

6.8 Optical Domain Refrectometry

- Low-Coherence interferometry (inter. With broad band light).
- Sources: SLD, LED, white light, femtosecond laser, etc.
- \rightarrow consider a transparent, layered structure under investigation.

6.8 Optical Domain Refrectometry

Scanning M, we retrieve

 $\Rightarrow The interface are resolved$ $\Rightarrow Reflectivity give info about$ refractive index $<math display="block">\Rightarrow L_{1,2,3,4} \text{ determine position of } interfaces.$

- ODR:
 - Successful for quantifying lasers in waveguides, fiber optics, etc.
 - 1987-HP- fiber optic reflectometer.

6.9 Optical Coherence Tomography(OCT)

- Optical technique capable of rendering 3D images from think biological samples.
- Penetrates 1-2 mm deep in tissue.
- => Typically implemented in optical fiber configuration.

- Tissue = continuous superposition of interfaces.
- Scanning M, a depth-resolved reflectivity signal is retrieved
 can resolve regions inside tissue(e.g. Tumors).

6.9 Optical Coherence Tomography(OCT)

- If mirror is swept at constant speed v:
 - \Rightarrow z=vt
 - \Rightarrow Phase delay: $\phi = 2kz = 2kvt$ (2 means back and forth)
 - \Rightarrow Frequency shift: $\Delta \omega = \phi = 2kvt \rightarrow Dopler Shift$ (6.25)
- The detector is recording a high-frequency signal \rightarrow Low-noise
- Dynamic range can easily reach 10 orders of magnitude! i.e. can record reflectivities from 1 to 1/10 billion!(100 dB)
- Various Technological Improvements:
 - Spectral domain OCT: instead of scanning M, measure $S(\omega) \rightarrow \Gamma(\tau)$
 - Galvo-scanning group delay- fast

6.9 Optical Coherence Tomography(OCT)

- Various Technological Improvements:
 - Spectral encoding- instead of scanning on x, illuminate with λ(x)
 - Spectroscopic OCT- trade z-resolution for S(ω) information
- Since 1991, ~1,000 OCT papers published.
- Currently applied in: Oftalmology, Dermathology, cardio, etc
- Recently combined with SHG, molecular imaging

What happens if on one area of the Michelson interferometer, there is extra material (eg. Glass)?

How does broad band fields propagate through dispersive materials (such as glass)? Think pulses!

$$n(\omega) = n(\omega_0) + \frac{dn}{d\omega} \bigg|_{\omega_0} (\omega - \omega_0) + \frac{1}{2} \frac{\partial^2 n}{\partial \omega^2} (\omega - \omega_0)^2 + \dots$$

Note:

$$n(\omega_0) \Longrightarrow \phi_0 = n(\omega_0) \cdot k_0 \cdot d = \text{constant} \rightarrow \text{not important}$$

$$\phi(\omega) = \phi_0 + \frac{dk}{d\omega} \cdot d \cdot (\omega - \omega_0) + \frac{1}{2} \cdot \frac{d^2k}{d\omega^2} \cdot d \cdot (\omega - \omega_0)^2 \dots$$

- Definitions:
 - $\frac{dk}{d\omega} = v = \text{group velocity}$ (6.27)
 - $\frac{d^2k}{d\omega^2} = \beta_2 = \text{group velocity dispersion (GVD)}$
- Different colors have different group velocities

- E.g. Pulse: blue red $v_{blue} < v_{red}$
- Riding with pulse (v=0) \rightarrow parabolic phase:
- So $\phi(\omega) \simeq \frac{1}{2}\beta_2 \cdot \omega^2$ (6.28)
- Cross-Spectral density: $W(\omega) = \left\langle E_1(\omega) \cdot E_2 *(\omega) \right\rangle \qquad (6.29)$
- Then, the cross-correlation function is

$$\Gamma_{12}(\tau) = \int_{0}^{\infty} W(\omega) e^{-i\omega\tau} d\omega$$
 (6.30)

6.10 Dispersion Effects on Temporal Coherence • $\Gamma_{12}(\tau) = \int_{0}^{\infty} W(\omega) e^{-i\omega\tau} d\omega$ is the generalization of (6.31) i.e generalized Wiener-Kinntilin Theorem.

- For the "unbalanced" Michealson, the cross-spectral density is $W(\omega) = E_1(\omega) \cdot E_2^*(\omega) = |E_1| |E_2^*| e^{i\frac{1}{2}\beta_2\omega^2} = S(\omega) e^{i\frac{1}{2}\beta_2\omega^2}$ (6.32)
- The cross-correlation function:

$$\Gamma_{12}(\tau) = \Im[W(\omega)] = \Im[S(\omega)e^{-i\frac{1}{2}\beta_2\omega^2}]$$
(6.33)

Remember convolution theorem:

$$\Gamma(\tau) = \Im[S(\omega)] \bigodot \Im[e^{-i\frac{1}{2}\beta\omega^2}] = \Gamma_0(\tau) \bigodot h(\tau)$$
(6.34)

- $h(\tau) = \Im[e^{i\frac{1}{2}\beta\omega^2}]$
- Useful Fourier Transform relationship for Gauss functions:

$$e^{-b\omega^{2}} \xrightarrow{\mathcal{F}} \frac{1}{\sqrt{2b}} e^{-\frac{t^{2}}{4b}}$$
(6.35)
$$h(\tau) = \frac{e^{i\frac{\tau^{2}}{2\beta}}}{\sqrt{i\beta}} \phi(\tau) \sim \tau^{2} \text{ also parabolic}$$

 $\phi(\tau)$

V

6.10 Dispersion Effects on Temporal Coherence Image: Coherence time is increased Frequency is "chirped"

- So, in OCT, is important to balance the interferometer=> minimum coherence length
- *l_c* gives the depth resolution