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� Interference is the phenomenon by which electromagnetic 

fields interact with one another.

� Interferometry has various applications from the movement 

of charge to spectroscopy and material characterization.

� Interference is the result of the superposition principle

� Intensity is the measurable quantity 

� Where       stands for time (or ensemble) average
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� Consider 2 fields

� Notes: 

� the dot product

� Polarization is critical

� Parallel polarization offers the most interference

�

� Assume parallel polarization

� is generally a random variable

� For uncorrelated (incoherent) fields                            => simplest case 

is a monochromatic field because it is fully coherent.
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6.1 Superposition of Fields
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� Fringe contrast (visibility):

�

(6.5)
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6.2 Monochromatic Fields
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1 2I I I= =� For                    :

� Practical Advantages of Interference:

a)  Interference term is                               so if     is too small to 

be measured directly then      can act as an amplifier.          

gives a higher sensitivity

2I

4I

π 2π 3π

I

0
ω τ

02 (1 cos[ ])I I ω τ= +
(6.7)

1 22 cos[ ]I I φ� 1I

2I 1 2I I

6.2 Monochromatic Fields
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� Practical Advantages of Interference:

b)                                        => if     is divided by 100, interference 

is divided by 10 => high dynamic range

c)  Imagine we frequency shift      by                     =>

1 2Interference I I∼ 1I

1E
1 2ω ω ω= −�

1 2 1 2cos[ ] cos[ ]I I t t tω ω ω⋅ − ∼ �

=> can tune  to high frequency ( > 1 kHz) => Low Noiseω�

6.2 Monochromatic Fields
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� Interference is obtained between different portions of the 

same wavefront (next: amplitude-division)

� Young Interferometer

� The oldest interferometer

� Small Slits � 1  -functions: [ ];  [y+ ];
2 2
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6.3 Wavefront-Division Interferometry
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� The field at the plane x=0

� Assume the observation plane is in the for zone => 

Fraunhoffer diffraction (Fourier)

� Remember                   (chapter 3)

� Fringes 

1 2 0 ( [ ] [y+ ])
2 2

d d
E E E E yδ δ= + = − + (6.8)
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0 0[ ] [ [ ]] [ ] 2cos[ ]

2

y y

d d
ig ig

y y

d
E q E y E e e E q

−
= ℑ = + = ⋅ (6.9)

y

y
q

zλ
′

=

cos[ ]
2

d
y

zλ
′→ ⋅ (6.10)

6.3 Wavefront-Division Interferometry
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� Similarity relationship again:

� Note: using Fourier it is easy to generalize to arbitrary 

slit/particle shape; similar to scattering from ensemble of 

particles (chapter 5, pp 12) => use convolution to express the 

arbitrary shape.
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6.3 Wavefront-Division Interferometry

ECE 460 – Optical Imaging

9Chapter 6: Interferometry



� We can use convolution to express arbitrary shape:

� Other Wavefront-Division Interferometers

a) Fresnel Mirrors

y
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6.3 Wavefront-Division Interferometry
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Image S thru M1 and M2

�virtual sources S1 and S2

�S1 and S2 act as Young’s pinholes

�same equations

� S1 and S2 are derived from the 
same sources and therefore 
coherent



b) Lloyd’s Mirror

� � Young

M
S ′

S

 and S S ′

6.3 Wavefront-Division Interferometry
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c) Thin films:

� Films of oil break the white 

light into colors due to 

interference and phase ( )f λ=

d) Newton’s rings:
Circular fringes = rings

� Localized on the surface of lens

S P

n

h

k

6.3 Wavefront-Division Interferometry
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� Interference is obtained by replicating the wavefront=>less 

amplitude in each beam.

� The Michelson Interferometer:

L∆

2M
1L

2L

∆

S

electron

BS

� Very sensitive to path length differences between ‘arms’

� Eg. It has been used to measure pressure in rarefied 

gases(place cell on one arm-> produce φ∆

6.4 Amplitude-Division Interferometry
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� BS- beam splitter

� assume thin for now!

� Let    ,      be the lengths of the 2 areas

=> The intensity at the detector:  

� We’ll come back to Michelson with low-coherence light, 

temporal coherence, OCT, etc

1L 2L

1 2 1 2I( L)=I +I +2 cos(2 )
L

I I π
λ
∆

∆

2 1 2 1Note: L ( )

time delay cos( )

L L C t t Cτ

τ ωτ

∆ = − = − =

= ⇒

(6.11)

6.4 Amplitude-Division Interferometry
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� Other amplitude-division interferometry

a) Plane parallel plate � reflection.
S S’

d
n

� point source-

� inter-fringe = ( , ) metrologyf n d →

b) Plane parallel plate- transmission.

� Note: With plane wave 

incident, fringes are localized at 

infinity => Need lens

P

L

θθ

θ

n

S

6.4 Amplitude-Division Interferometry
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c) Fizeau Interferometer:

Reference 

surface

R M

P

Fringes

� Used to test mirrors and 

other surfaces.

d) Mach-Zender Interferometer

� Very Common 

� Shear interferometry

� Tilt one mirror

� Fringes � analysis of surfaces
Sample

6.4 Amplitude-Division Interferometry
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Fabny-Penot interferometry
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6.5 Multiple Beam Interference
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� R1 , R2 � reflectivities

� R increases � narrower lines

� i.e. More reflection orders 

participate in interference

� Transmitted Intensity

� In practice, Fabny-Perot gave accurate information about 

spectral lines(also called etalon) 

 is fixed  etalon∆ ⇒

D

S

� Rayleigh Criterion:

1

1

2

δλ

� 2 lines are 
separated if:

δλ ≥ FWHM

2R

( )

( )

I r

iI

2kπ 2 2kπ π+

1R

6.5 Multiple Beam Interference
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� So far, we assumed monochromatic light = fully coherent.

� What happens when an arbitrary, broad-band, extended 

source is used for interference?

a) michelson interferometry

BS

D

L∆

1M

S

( )I L∆

L∆

� The contrast of the fringe is decreasing

� i.e. limited temporal coherence.

6.6 Interference with Partially Coherent Light
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b) Young Interferometer :

A

Ω
2

Ac

λ
≅

Ω

� i.e. Limited Spatial 

Coherence

d OA

d

1 2I I+

k

k

6.6 Interference with Partially Coherent Light
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� Coherence defines the degree of correlation between fields:

� Typical correlation at one point in space (typical 

coherence)

� Temporal correlation between fields at two points (spatial 

coherence) 

6.7 Temporal Coherence  

ECE 460 – Optical Imaging

21Chapter 6: Interferometry

� Given the field at one point            , the mutual coherence 

function is: 

autocorrelation function

( ) ( ) *( ) tE t E tτ τΓ =< ⋅ + >

( ) *( )E t E t dtτ
∞

−∞

= ⋅ + =∫

( , )E r t

(6.13)



� Note:

� So

� Appl y again the correlation theorem (Eq 2.30)

� So, the autocorrelation function          relates to the optical

spectrum of the field:

2
(0) ( )E tΓ =

I  irradiance= ⇒

E EΓ = ⊗

2

[ ] ( ) *( ) ( )E E Eω ω ωℑ Γ = =� � �

(6.14)

(6.15)

6.7 Temporal Coherence
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( )  Spectrum  FTIRS ω= = ⇒

( )τΓ

Wiener-Kintchin theorem.

0

( ) ( ) ττ ω ω
∞

−Γ = ⋅∫ iwS e d (6.16)



� ! Compare 6.16 with 5.28

� ! It applies even when E(t) does not have a Fourier 

Transform

� Typically, spectrum is centered on     

� Assume spectrum is                ; apply shift theorem (Eq 2.31)

� Complex degree of coherence 

0ω

0( )S ω ω−

0

0

0

( ) ( ) ,

where ( ) ( ) ;  

ω τ

τ

ω

τ τ

τ ω ω
∞

−

⇒Γ = Γ ⋅

Γ = ⋅ = −∫
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iu
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S u e du u
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( )

(0)

τ
γ τ

Γ
= ∈
Γ

� ( ) (0;1)γ τ⇒ ∈

(6.17b)

(6.17a)

(6.18) (6.19)

6.7 Temporal Coherence
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� Measuring the temporal coherence: Michelson interferometer

τ

1M

2M
1E

2E

∆

S

�

� Irradiance:

� Assume:

1 2totalE E E= +

2

1 2( ) ( )I E t E t τ=< + + >

1 2E E=

1 '2' 1 2 1 2

1

( ) *( ) * ( ) ( )

2 2Re[ ( )]

I I I E t E t E t E t

I

τ τ

τ

= + + + + +

= + Γ

� can be measured separately  � access to            directly, 

by moving 
1,2I Re( )Γ

2M Re[ ( )]τΓ

τ
ω

S

0ω

(6.20)

(6.21)

6.7 Temporal Coherence
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� The degree of coherence � Spectral width

cτ
τ

( )γ τ

ω

( )S ω

ω∆

0ω
 coherence time 

    width of ( )

( ) [ ( )]

 constant

τ

γ τ

τ ω

ω τ

=

≡

Γ = ℑ

⇒ ∆ ⋅ =

c

c

S

� Coherence Length: 

� Rule of thumb:

0 2

0

2 2
; ( ) 2

π π ω ω λ ω
λ λ π λ

ω ω ω ω λ ω
∆ ∆ ∆ ∆

= ⋅ = ⋅ ∆ = ∆ = = => =
c

c T c c

c cl C τ= ⋅

2

0
cl

λ
λ

=
∆

� Interference occurs only if 

� Broad spectrum                      => short    ( 2 3 )cl mµ≅ −( 100 )nmλ∆ =

∆ = cL l

(6.22)

(6.23)

(6.24)

6.7 Temporal Coherence
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� Low-Coherence interferometry ( inter. With broad band light).

� Sources: SLD, LED, white light, femtosecond laser, etc.

� consider a transparent, layered  structure under investigation.

1   2   3  4

M

D

S

d

a   a   a  

cd l>>

6.8 Optical Domain Refrectometry
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� Scanning M, we retrieve

R

L∆1L 2L 3L
4L

⇒ The interface are resolved

⇒ Reflectivity give info about 

refractive index 

⇒ determine position of 

interfaces.
1,2,3,4L

� ODR: 

� Successful for quantifying lasers in waveguides, fiber 

optics, etc.

� 1987-HP- fiber optic reflectometer.

6.8 Optical Domain Refrectometry
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� Optical technique capable of rendering 3D images from 

think biological samples.

� Penetrates 1-2 mm deep in tissue. 

=> Typically implemented in optical fiber configuration.

M
2x2

Coupler

S

D

1991, Fujimoto’s 

group, MIT

Scan beam x-y

Scan M -> z

� Tissue = continuous superposition of interfaces.

� Scanning M, a depth-resolved reflectivity signal is retrieved 

=> can resolve regions inside tissue(e.g. Tumors).

6.9 Optical Coherence Tomography(OCT)
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� If mirror is swept at constant speed v:

⇒ z=vt

⇒ Phase delay: (2 means back and forth)

⇒ Frequency shift: � Dopler Shift

� The detector is recording a high-frequency signal� Low-noise

� Dynamic range can easily reach 10 orders of magnitude! i.e. 

can record reflectivities from 1 to 1/10 billion!(100 dB)

� Various Technological Improvements:

� Spectral domain OCT: instead of scanning M, 

measure 

� Galvo-scanning group delay- fast

2 2kz kvtφ = =
2  kvtω φ∆ = =

S( ) ( )ω τ
ℑ

→Γ

(6.25)

6.9 Optical Coherence Tomography(OCT)
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� Various Technological Improvements:

� Spectral encoding- instead of scanning on x, illuminate 

with

� Spectroscopic OCT- trade z-resolution for         

information

� Since 1991, ~1,000 OCT papers published.

� Currently applied in: Oftalmology, Dermathology, cardio, 

etc

� Recently combined with SHG, molecular imaging

6.9 Optical Coherence Tomography(OCT)
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6.10 Dispersion Effects on Temporal Coherence

� What happens if on one area of the Michelson interferometer, 

there is extra material (eg. Glass)? 

1M

2M

∆

S

d
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� How does broad band fields propagate through dispersive 

materials (such as glass)? Think pulses! 

� The phase delay 

through a transparent 

material:

0

( ) ( )

( )

k d

k d n

φ ω ω

ω

= ⋅

= ⋅ ⋅

� Taylor expansion of            

around the central frequency: 
( )n ω

0ω 1ω
ω

( )S ω

d

( )n ω

k

ω ω

( )n ω

Above resonance

Below resonance

( )S ω
Incident 

spectrum

0ω

(6.26)

6.10 Dispersion Effects on Temporal Coherence

ECE 460 – Optical Imaging

32Chapter 6: Interferometry



0

2
2

0 0 02

1
( ) ( ) ( ) ( ) .....

2

dn n
n n

d ω

ω ω ω ω ω ω
ω ω

∂
= + − + − +

∂

0 0 0 0( ) ( )n n k dω φ ω=> = ⋅ ⋅ =
2

2

0 0 02

1
( ) ( ) ( ) ....

2

dk d k
d d

d d
φ ω φ ω ω ω ω

ω ω
= + ⋅ ⋅ − + ⋅ ⋅ ⋅ −

� Definitions:

� = v = group velocity

� =      = group velocity dispersion (GVD)

� Different colors have different group velocities

dk

dω

2

2

d k

dω 2β

(6.27)

6.10 Dispersion Effects on Temporal Coherence
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� E.g. Pulse:

� Riding with pulse (v=0) � parabolic phase:

� So 

� Cross-Spectral density:

� Then, the cross-correlation function is 

blue red
blue redv v<

( )φ ω

0ω

( )S ω
2

2

1
( )

2
φ ω β ω⋅�

1 2( ) ( ) *( )W E Eω ω ω= ⋅

12

0

( ) ( ) iW e dωττ ω ω
∞

−Γ = ∫

(6.28)

(6.29)

(6.30)

6.10 Dispersion Effects on Temporal Coherence
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� is the generalization of (6.31) i.e

generalized Wiener-Kinntilin Theorem.

� For the “unbalanced” Michealson, the cross-spectral density is

� The cross-correlation function:

� Remember convolution theorem:

12

0

( ) ( ) iW e dωττ ω ω
∞

−Γ = ∫

2 2
2 2

1 1

* * 2 2
1 2 1 2( ) ( ) ( ) ( )

β ω β ω
ω ω ω ω= ⋅ = =

i i

W E E E E e S e

2
2

1

2
12 ( ) [ ( )] [ ( ) ]

β ω
τ ω ω

−
Γ = ℑ = ℑ

i

W S e� �

21

2
0( ) [ ( )]     [ ] ( )      ( )

βω
τ ω τ τ

−
Γ = ℑ ℑ = Γ

i

S e hv

(6.32)

(6.33)

(6.34)

6.10 Dispersion Effects on Temporal Coherence
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2( ) [ ] 
βω
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i

h e�

� Useful Fourier Transform relationship for Gauss functions:
2

2

2

4

2
2

1
 

2

( )  ( )  a lso  p a rabo lic

t

b b

i

e e
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e
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ω
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β

τ φ τ τ
β

−− →

= ∼

F

V

( )φ τ

cl

(6.35)
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V

( )φ τ

� The coherence time is increased

� Frequency is “chirped”

� So, in OCT, is important to balance the interferometer=> 

minimum coherence length   

� gives the depth resolution
cl

6.10 Dispersion Effects on Temporal Coherence
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