Northwestern University Initiative for Teaching Nanoscience

By Baudilio Tejerina

Northwestern University

This package allows users to study and analyze of molecular properties using various electronic structure methods.

Launch Tool

You must login before you can run this tool.

Version 1.2 - published on 18 Mar 2015

doi:10.4231/D3N58CM9R cite this

Open source: license | download

View All Supporting Documents

    NUITNS - main window Modeling a Toroidal SWCNT using INDO method. Predicted INDO absorption spectrum.

Category

Tools

Published on

Abstract

Electronic structure calculations play a major role in science and engineering, providing valuable information about molecular structure, thermodynamic and spectroscopic properties, and for modeling chemical reactivity and catalysis. The teaching of electronic structure theory at the undergraduate level is a common activity in chemistry departments (usually as part of a physical chemistry curriculum that is taught to junior-level students), and often some of the students are from engineering. Traditionally the material covered in such courses emphasizes fundamental concepts, such as the postulates of quantum mechanics, and simple applications, such as the particle in box, harmonic oscillator, and the hydrogen atom. Sometimes there is a computational component in which an electronic structure code is used to study small molecule properties. Such material is reasonable for chemistry majors, but does not serve engineering students very well.

Northwestern University developed curricular materials for teaching junior-level engineering students that include projects with an engineering emphasis. These projects use the NUITNS program package at nanoHUB.org, which is an integrated package for electronic structure computation and molecular property visualization. NUITNS provides a user environment where the interface for defining the nature of the calculations and for visualizing the results is straightforward enough that the students can focus on the physical content of their calculations, basically making quantum mechanics “come alive” for solving problems that have real-world connections.

NUITNS includes the following components:

QC-Lab : electronic structure calculations based on the GAMESS electronic structure program (also includes the MacMolPlt and Molden programs for building and display of molecules)
CNDO/INDO : electronic structure calculations based on semiempirical methods
UV-Spec : electronic structure and the prediction of electronic spectra based on semi-empirical methods
MolST Molecular Structure Tracer: visualization of molecular structure
TEDVis Theoretical Visualization of Electron Density: visualization of electron density
Among these components, QC-Lab provides the most extensive functionality for doing electronic structure calculations. The figure below shows a snapshot of the QC-Lab interface, which includes facilities for inputting or building molecular structures, defining parameters for using a variety of electronic structure methods and basis functions, and selecting many different properties to calculate. The output from such calculations can be used (via the MacMolPlt and Molden programs) to display molecular orbitals, electron densities, vibrational normal modes, various kinds of spectra, and many other properties. QC-Lab can accommodate density functional and wave function-based electronic structure theories, as well as semiempirical calculations based on methods like PM3. The CNDO/INDO and UV-Spec codes provide additional functionality for doing semiempirical calculations based on methods like INDO/S that are relevant to the determination of electronic spectra.

Cite this work

Researchers should cite this work as follows:

  • Baudilio Tejerina (2015), "Northwestern University Initiative for Teaching Nanoscience," https://nanohub.org/resources/nuitns. (DOI: 10.4231/D3N58CM9R).

    BibTex | EndNote

Tags