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1. Introduction

These notes are intended to complement discussionstandard textbook such as
Fundamentals of Modern VLS Devices by Yuan Taur and Tak H. Ning [1] arg&miconductor
Device Fundamentals by R.F. Pierret [2].) The objective here is to ersfand how to treat MOS
electrostatics without making the so-calkedepletion approximation. We assume a bulk MOS

structure, but a similar approach could be use&fr structures.

2. MOS Electrostatics: Electric Field vs. Positio

We begin with Poisson’s equation:

dzl// _9 + -
W_gl:p(x)_n(x)-kND_NA} (0)
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and assume a p-type semiconductor for whHith=0. Complete ionization of dopants will be
assumed N, = N,). In the bulk, we have space charge neutralitlyps—n, — N, =0, which

means
N, = Pg —Ng, (1)

so Poisson’s equation becomes

d’y _ —q

;&;=EQUX@-HW%HE‘DJ, 2)
where

Ps C N, @)

ng On? /N,

Using eqn. (3), we can express egn. (2) as

d’y _-q

2
dx &

[ P(X) =N, —n(x) + ni2 IN, } (4)

The energy bands vary with position when the ebstatic potential varies with position. For
example, a positive gate voltage bends the bands,dand a negative gate voltage bends the
bands up (because a positive potential lowers lgeren energy). If we assume equilibrium,
then the equilibrium carrier densities in the semductor can be related to the electrostatic

potential by
p(x) = N, & 1 (5)

and
2

n(x) = :I_. et WOk, (6)
A

Finally, using eqgns. (5) and (6) in (4), we fin@ &0isson-Boltzmann equation,

dz_w = __q NA(e_ql///kBTL - 1) — n_'2 (eql/’/kBTL - 1) (7)

dx* &g N,
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which we need to integrate twice to fig(x).

To integrate eqn. (7), we begin with

dz_‘/’:ix(d_w)
dx* dx \dx

and use the chain rule,

fy_d (W), @

dx* dy \dx/ dx
If we let p:C;—w, then

X

d’y _ dp

x> Tdy’

and eqgn. (7) becomes

dp _Q{ _ qlksT n’ IksT,
p— =—| N, (e ¥ —1)——(g¥/e —1) | .
dy &| ° N,

Now integrate eqgn. (8) with respectdw,

— 2
pdp = g—q{NA(e-q‘”’kB“ -1)- (e —1)} dy

S A

—q (v } n* .
J'OP p, dpy — _QJ'O [NA(G kT, _1)_N_|(e Q@ lkgT, _1) d(//

59 A

ﬁ = __q N ﬂ] @ Wikl
2 & " q

p2 = M_(e_q‘/’/kBTL + qw 1\ +n_i2(eq¢//kBTL _ qw
_L JARYAL

£ keT, kT,
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dy

Recall thatp = e so we can take the square root of the final tesdind
X

N L ) ©)

F(Ql/) :\/(e—qc///kBTL + q‘/’ 1] +|r\]|_i22[e+q¢//kBTL _ﬂ 1] . (10)

where

keT, KT,

If ¢ >0, choose the “+” sign (for a p-type semiconductand if P <O, choose the “-* sign.
Equations (9) and (10) give the position-depenadsdtric field within the semiconductdrwe

know the position-dependent electrostatic potential

The surface electric field is an important quaniity MOS electrostatics. From eqgn. (9)

evaluated at the surfac& € 0) where the electrostatic potentia)/.(x:O), is the surface

potential, ¢, we find the surface electric field as

A e 2} (1)

From egn. (11) and Gauss’s Law, we find the tdtalrge in the semiconductor as a function of

the surface potential as

(12)

Q. (W) =—¢e,E,=F2e.k,T,N, F(y,)

which isan important and frequently-used result For the assumed p-type semiconductor, the

- sign in front of the square root is used whggn> 0 and the + sign wheg, <0.
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Example 1. Semiconductor Charge vs. Surface Potaat

Consider a p-type, silicon MOS capacitor at roomgerature withN, =5x10"cm®. Plot
|Q./d vs. surface potentialy..

A Matlab script to perform this calculation is inded in the appendix. The result is shown
below in Fig. 1.

10",

1013:_

|Qs|iq (cm 2)

1012:_

11

10 ' P
04 -02 0 02 04 06 08 1

yg (V)

1.2 14

Fig. 1 Magnitude of the charge per square cm déiby q) vs. surface potential in volts. (See
the appendix for the Matlab® script that produdad plot.)
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Figure 1 shows the accumulation of holes gar< 0, the depletion of the p-type semiconductor
for . >0, and inversion fogy. >2¢,. To understand the result, let's examine eqn) (d@e

closely. Consider accumulatiog/{ <O0) first. In this case, we have from eqgn. (12)

Qs = +4/265KsT N, (&)
and according to eqn. (10), for strong accumulation
F((//q) - e‘é”s/szTL’

SO

Q= +265kT, N, €<

Next, consider inversiony, > 2¢,) next. In this case, we have from eqn. (12)

Qs = Y 2¢4 kBTL N, F(‘/’s)’

and according to eqn. (1), for strong inversion

Fs) ~ e ™,
A

2
QS = Q =+ M e+q¢/5/2kBTL )
n NA

The electron density at the surface is

SO

2
n _
n(0)= —— e"¥s*" cm?,
A

so we can write the charge density pef e

Qs = +y/264kT, N(0) .

Taur and Ning [1] point out that this gives us m@ie way to estimate the thickness of the

inversion layer. Since
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Qn = qn(o)tinv !
we get the following estimate for the thicknesshaf inversion layer,

_2¢g keT,n(0)
inv q| Qn| )

Finally, consider the case of depletidh<{¢/. <2¢). In this case, we can ignore electrons and

holes to find from eqgn. (10),

/C#/s_
F(ygs) O KT, 1,

which, according to egn. (12) gives

20N
Z-SD\/ 2, A(Ws—ksT /) -

S

The “exact” result is just like depletion approxtoa (eqn. (2.161) in [1]) excegor k. T, /q

correction.

Example 2: Surface Potential vs. Gate Voltage

Figure 1 is in terms of the surface potential; vaeyvthe surface potential with the gate voltage

according to:
Vo =V t¢¥s——=

where V, is the “flat band voltage”. Consider a p-typdjcen MOS capacitor at room

temperature witiN, =5x10"cm®. AssumeV,, =0, t, =2 nm, andk, =4. Plot the surface

' otox

potential,/.vs. gate voltage on the x-axis.

A Matlab script to perform this calculation is inded in the appendix. The result is shown

below in Fig. 2.
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Y, (V)

Vg (V)

Fig. 2 Surface potential vs. gate voltage. (Seeapppendix for the Matlab® script that produced
this plot.)

Figure 2 shows that no matter how large the gateag®e is, it is hard to push the surface

potential very much beyongy .

3. The Semiconductor Capacitance

Capacitance is the derivative of charge with respewoltage, so we find the semiconductor
capacitance as
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Cq :_(jd—f;/zqgs N, x

S

(1_ e‘qllls/kTL ) + n_|2 (eqf/’s/kTL _ 1)
N )

2
5 [kBTL W, 1y kBTLj Ln) (kBTL VT _ kBTLj
W og *"q )TN Ug > q

Under depletion conditiong) < ¢, <2¢, and eqn. (13) simplifies to

C :_dQs:\/ Qs Ny 25_9
N dws 2(403 - kBTL /C]) W,

which is the standard depletion approximation ite@dn. (2.174) of [1]) except for tHeT./q

correction, which is often neglected.

We can also take the limit of eqn. (13)¢s — 0, to find the flat band capacitance as

C,(FB) = ‘E—S (14)

D

Equation (13) can be used to evaluate the low BrgquMOS CV characteristic. With a little

more care, it can also be adapted to evaluateigheftequency CV characteristic too.

4. MOS Electrostatics Il (potential vs. position)

So far, we have only integrated Poisson’s equagqgn, (7), once. To gai(x) for a giveny,

we need to integrate again. Recall that

d 2k,T,N
W _ 2 2K LN iy 9)
dx &

We can integrate egn. (9) to find
"’j” dy _ /2kBTL N,
v Fw) i
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or

/ £ 4} dyy
2ksT, N 00 F@)

Finally, it is convenient to write the result as

Ys d(//
w(x) % F(y)

X=1Ly (15)

whereL is the extrinsic Debye length. Equation (15) adrbe integrated analytically, so, for a
given ¢, selectO <¢/(Xx) <y, then numerically integrate (15) to get

The next question is: “How do we compu@e(¢.)?” Well above thresholdQ. =Q,, so we

can get it from eqgn. (12), but how would we doxaetly for all bias conditions? First, recall
that

n2
n(X) = _| eq‘//(x)/kBTL
A
SO

xykgr, OX
Q, = qj n(x)dx —qj e‘*’" ) W —dy.

Since we know the electric field as a function dfogm eqn. (9), we find

2 ¥s eqt///kBTL

Q= q_IJZkT Nz Fo) Y

(16)

Consider another question: “How do we computedig@etion layer charge?” We know how to
compute it using the depletion approximation, bawho we do it exactly. We begin with
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00

Q =~ IN, - POOIGx= N, [ (1~ o,

which we can change the variable of integratiofirta.

Ys 1_ e—q(///kBTL
Q, =—qN dy .
° A!JZKBTLNA/ES F(‘/’)

(17)

5. “Exact” Solution of the MOSFET:

Taur and Ning discuss the “exact” solution for aga@hannel MOSFET [1]. These notes amplify

on their discussion. Let's begin by reviewing therivation of eqn. (6), which applies only

equilibrium.

n=nef Rk (18)
let

E =-0¢(X) - Qe (19)
and choose

QWeer =-E - (20)

The result is egn. (6),
n=ne¥®el (21)
Out of equilibrium, we have
n=n ghl)E0) et (22)
Using egns. (19) and (20) in egn. (22), we have
n(x) = n e ReIEien, (23)
If we define

a¢,= E- - F (24)

then
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n(x)=n eq[w(x)—wn(x)]/kan . (25)

In a MOSFET, a positive drain bias will pulf, down by qV, at the drain. If the source is
grounded,¢ (y=0)=0and ¢,(y=L) =V,. The quasi-Fermi potential will vary with distanc
y, along the channel, but we assume that it is cahstdh x, at least across the inversion layer.

In a MOSFET, the holes will stay in equilibrium, egn. (5) continues to apply.

Now, we make the gradual channel approximatiorthaba 1D Poisson equation can be

solved to findE, (x,y). Equation (7) becomes

n2
N_.(eqw—%)/ksn - 1)} (26)

A

d’y _—q —qlksT
_ 1 =_1 e BL _1 _
dXZ gg |:po( )

which can be integrated to find

£w.g)== 2T Fy,g) (27)

kT, q[/j _ \ n_|2( — 0@/ KeTL ( QO KeT, _ _ ql/’\
Flw,a) \/Le +kT 1J+ NALe el (¢ 1) kBTLJ' (28)

where

To find the inversion layer density at any poirdraj the channel,

Q,=-q j n(x)dx = -qf n(x)—dw

”i n(x)
. EW.q)

or

n2 ¥s eQ(‘/’ @)k,

Q@) =-a3- dy (29)
), Ewa)
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We should notep ¢ varies along the channel. We determifefrom
Vo =V tWs——=

or

VG:VFB+¢IS+W ' (30)
| ox

Where £_ is determined from eqn. (27) with = ¢

To summarize, at some locatioy, along the channel there is a correspondingy).
Equation (30) can be solved iteratively fgg, given the gate voltage/,. Knowing ¢, we

determine the corresponding inversion layer chaggategrating eqn. (29) numerically.

The next question is: “How do we determihg.” From

dF
Jn = nun n (31)
dy
we find
WVDS
s = Har - | [-Qu(@)1dg (32)

which is egn. (3.10) in Taur and Ning (recall tliaur and Ning us¥ for ¢,). Using eq. (29) in
egn. (32), we find

W Vbs (‘l’s (nZ /N )eQ(ll/‘%)/kBTL \
| = QL o | A dy |dg (33)
bs ™ HRel { st £Zy.a) J

Equation (33) is the famous Pao-Sah double integqatession forl .

Equation (33) can be integrated numerically toaobt ,.(V;s,V,c). Note that we made

the gradual channel approximation, so it applidg tmlong channel transistors. Note also, that

it is valid for the entireV, range; the drain current saturates automaticailllgout needing to
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worry about channel pinch-off. Finally, note thiéhie double integral expression can be

converted to a single integral as discussed bydiand Shields [2].

6. Summary

A few key things to remember (or look up when yeed them) are listed below.

1) Surface electric field for a given surface potdral:

2 (1)

where

Fy)= \/Le Wil + =2 q‘/’ _1J+ N2 Le*@”/ksﬂ—kq‘é’ —1} (10)

2) Semiconductor charge density for a given surfagaotential:

Os(y,)= =F2¢e4k,T,N, F(yy) (12)

In depletion, eqn. (12) reduces to:

Qs 042085 N, (@05 — ks T, /),
which is very close to the depletion approximatiexcept for the-k,T, /q correction.
For strong accumulation, egn. (12) reduces to:

Qs = +/264k,T, N, €¥™ (strong accumulation)
For strong inversion, egn. (12) reduces to:

284K, n o WkT,

= =~ +
QL=Q, N,

(strong inversion)

which can also be expressed as
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Qs = +/2£5ksT, N(0)

The inversion layer thickness can be estimated as:

(= 2&5KsT,
inv q| Qn|

3) Capacitance:

An analytical expression for the semiconductor capace exists as given by eqn. (13). Under

flatband conditions, the semiconductor capacitdrem®mes:

Co(FB) =2 (14)
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Appendix

This appendix contains the Matlab® script that pices Figs. 1 and 2.

% Surface potential vs. Gate voltage for MOS Capaci tor

% Date: Oct. 23, 2012

% Author: Xingshu Sun and Mark S. Lundstrom(Purdue University)
%

% References

% [1] Mark Lundstrom and Xingshu Sun (2012), "Notes on the
Solution of the Poisson-Boltzmann Equation for MOS Capacitors and
MOSFETS, 2nd Ed." http://nanohub.org/resources/5338

%Initialize the range of the surface potential
psi =-0.2:0.01:1.2; %[V]

%Specify the physical constants

epsilon_siO2 = 4*8.854*1e-14; %Permittivity of SiO2 [F/cm]
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epsilon_si = 11.68*8.854*1e-14; %Permittivity of Si
k_b = 1.380e-23; %Boltzmann constant [J/K]

g = 1.6e-19; %Elementary charge [C]

%Specify the environmental parameters

TL = 300; %Room temperature[K]

ni = 1e10; %lIntrinsic semiconductor carrier density
N_A = 5el7; %Acceptor concentration [cm-3]

tox = 2e-7; %The thickness of SiO2 [cm]

V_FB = 0; %The flat-band voltage [V]

%Calculate the capacitance

cox = epsilon_siO2/tox; %[F/cm2]

%Calculate the F function (to calculate the total ¢
respect to different surface potentials. See: eqn.

F_psil = exp(-psi*g/k_b/TL) + psi*g/k_b/TL -1,
F_psi2 = ni"2/N_A"2*(exp(psi*g/k_b/TL) - psi*qg/k_b/
F_psi = sqgrt(F_psil + F_psi2);

%lInitialize the vectors
psi_length = length(psi);

Qs = zeros(psi_length,1);
V_G = zeros(psi_length,1);
psi_B = zeros(psi_length,1);

[F/cm]

[cm-3]

harge) with
(10) in [1]

TL -1);
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%Calculate the total charges and the corresponding gate voltages.
See eqn. (12) in [1]

fori = 1:psi_length

if psi(i) <=0
Qs(i) = sqrt(2*epsilon_si*tk_b*TL*N_A)*F_psi ®;
%Calculate charge when the surface potential is neg ative
else
Qs(i) = -sgrt(2*epsilon_si*k_b*TL*N_A)*F_ps i(i);
%Calculate charge when the surface potential is pos itive
end
psi_B(i) = k_b*TL/g*log(N_A/ni); %Get the bulk potential as a
reference and it is a constant with respect to VG
V_G(i) = V_FB+psi(i)-Qs(i)/cox; %Calculate the gate voltage
end

%PIlot total charge vs. surface potential (psi_S)
figure(1)
semilogy(psi,abs(Qs)/q,'r','linewidth’,3);

hold on

set(gca, xlim', [-0.4 1.4], 'ylim', [1ell 1lel4]);
set(gca,fontsize',13);

xlabel(\psi_S (V)");

ylabel('|Qs|/q (cm”-2)’);

%Plot x=0
plot(zeros(1,21),logspace(10,16,21),'k--")
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%PIlot surface potential (psi_S) vs. gate voltage wi
potential 2*psi_B

figure(2)

hl=plot(V_G,psi, ' linewidth’,3);

hold on

h2=plot(V_G,2*psi_B,"--b','linewidth’,3);
set(gca, xlim', [-3 10], 'ylim', [-0.4 1.4]);
set(gca,fontsize',13);
legend(\psi_S','2*\psi_B','Location’,'SouthEast')
xlabel('V_G (V)";

ylabel(\psi_S (V)');

%Plot x=0 and y=0
plot(-10:10, zeros(1,21), 'k--"
plot(zeros(1,21),-10:10, 'k--")

th reference
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