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1. Introduction 

These notes are intended to complement discussions in standard textbook such as 

Fundamentals of Modern VLSI Devices by Yuan Taur and Tak H. Ning [1] and Semiconductor 

Device Fundamentals by R.F. Pierret [2].)  The objective here is to understand how to treat MOS 

electrostatics without making the so-called δ-depletion approximation.  We assume a bulk MOS 

structure, but a similar approach could be used for SOI structures. 

 

2.  MOS Electrostatics:  Electric Field vs. Position 

We begin with Poisson’s equation: 

d2ψ
dx2 = −q

εSi

p(x) − n(x) + ND
+ − NA

−         (0) 
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and assume a p-type semiconductor for which ND = 0.  Complete ionization of dopants will be 

assumed (NA
− = NA ).  In the bulk, we have space charge neutrality, so pB − nB − NA = 0, which 

means 

NA = pB − nB ,          (1) 

so Poisson’s equation becomes 

d2ψ
dx2 = −q

εSi

p(x) − n(x) + nB − pB[ ],       (2) 

where 

pB ≅ NA

nB ≅ ni
2 / NA

.          (3) 

Using eqn. (3), we can express eqn. (2) as 

d2ψ
dx2 = −q

ε si

p(x) − NA − n(x) + ni
2 / NA .      (4) 

The energy bands vary with position when the electrostatic potential varies with position.  For 

example, a positive gate voltage bends the bands down, and a negative gate voltage bends the 

bands up (because a positive potential lowers the electron energy).  If we assume equilibrium, 

then the equilibrium carrier densities in the semiconductor can be related to the electrostatic 

potential by 

p(x) = NAe−qψ x( )/kBTL          (5) 

and 

 n(x) = ni
2

NA

e+qψ x( )/kBTL .                (6) 

Finally, using eqns. (5) and (6) in (4), we find the Poisson-Boltzmann equation, 

 

d2ψ
dx2 = −q

εSi

NA(e−qψ /kBTL −1)− ni
2

NA

(eqψ /kBTL −1)








 

      (7) 
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which we need to integrate twice to find ψ (x).  

 

To integrate eqn. (7), we begin with 

d2ψ
dx2 = d

dx
× dψ

dx






 

and use the chain rule, 

d2ψ
dx2 = d

dψ
× dψ

dx






× dψ
dx

. 

If we let p = dψ
dx

, then 

d2ψ
dx2 = p

dp

dψ
, 

and eqn. (7) becomes 

p
dp

dψ
= −q

εSi

NA (e− qψ /kBTL −1)− ni
2

NA

(eqψ /kBTL −1)








 .    (8) 

Now integrate eqn. (8) with respect to dψ , 

pdp = −q

εSi

NA (e− qψ /kBTL −1)− ni
2

NA

(eqψ /kBTL −1)








dψ  

′p d ′p
0

p

∫ = −q

εSi

NA(e−qψ /kBTL −1)− ni
2

NA

(e+qψ /kBTL −1)








dψ

o

ψ

∫  

p2

2
= −q

εSi

NA

−kBTL

q







e−qψ /kBTL

o
ψ −ψ









− ni
2

NA

kBTL

q







eqψ /kBTL

o
ψ −ψ

















  

p2 = 2kBTL NA

εSi

e−qψ /kBTL + qψ
kBTL

−1






+ ni

2

NA
2 eqψ /kBTL − qψ

kBTL

−1














 . 
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Recall that p = dψ
dx

, so we can take the square root of the final result to find 

 

E (x) = −
dψ x( )

dx
= ± 2kBTL NA

εSi

F(ψ ) ,     (9) 

where 

F(ψ ) = e−qψ /kBTL + qψ
kBTL

−1






+ ni

2

NA
2 e+ qψ /kBTL − qψ

kBTL

−1






.    (10) 

 

If ψ > 0, choose the “+” sign (for a p-type semiconductor), and if ψ < 0, choose the “-“ sign.  

Equations (9) and (10) give the position-dependent electric field within the semiconductor if we 

know the position-dependent electrostatic potential.  

The surface electric field is an important quantity in MOS electrostatics.  From eqn. (9) 

evaluated at the surface (x = 0) where the electrostatic potential, ψ x = 0( ), is the surface 

potential, ψS, we find the surface electric field as 

 

E S = ± 2kBTL NA

εSi

F(ψ S ) .            (11) 

From eqn. (11) and Gauss’s Law, we find the total charge in the semiconductor as a function of 

the surface potential as 

,    (12) 

which is an important and frequently-used result. For the assumed p-type semiconductor, the 

- sign in front of the square root is used when ψ S > 0 and the + sign when ψS < 0. 
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Example 1:  Semiconductor Charge vs. Surface Potential 

Consider a p-type, silicon MOS capacitor at room temperature with NA = 5×1017cm-3.  Plot 

QS q vs. surface potential, ψ S . 

 

A Matlab script to perform this calculation is included in the appendix.  The result is shown 

below in Fig. 1. 

 

Fig. 1  Magnitude of the charge per square cm (divided by q) vs. surface potential in volts.  (See 

the appendix for the Matlab® script that produced this plot.) 
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Figure 1 shows the accumulation of holes for ψ S < 0, the depletion of the p-type semiconductor 

for ψ S > 0, and inversion for ψ S > 2ψ B .  To understand the result, let’s examine eqn. (12) more 

closely.  Consider accumulation (ψ S < 0) first.  In this case, we have from eqn. (12) 

QS = + 2εSikBTL NA F(ψ s ) 

and according to eqn. (10), for strong accumulation 

F(ψ S ) → e−ψ S /2kBTL , 

so 

QS ≈ + 2εSikBTL NA e−qψ S /2kBTL  . 

 

Next, consider inversion (ψs > 2ψB) next.  In this case, we have from eqn. (12) 

 QS = − 2εSikBTL NA F(ψ S ), 

and according to eqn. (1), for strong inversion 

F(ψ S ) → ni

NA

e+qψ S /2kBTL , 

so 

QS ≈ Qn ≈ + 2εSikBTL ni
2

NA

e+qψ S /2kBTL . 

The electron density at the surface is 

n(0)= ni
2

NA

e+qψ S /kBTL cm-3, 

so we can write the charge density per cm2 as 

QS ≈ + 2εSikBTL n(0) . 

Taur and Ning [1] point out that this gives us a simple way to estimate the thickness of the 

inversion layer.  Since 
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Qn ≈ qn(0)tinv , 

we get the following estimate for the thickness of the inversion layer, 

tinv ≈
2εSikBTLn 0( )

q Qn

. 

Finally, consider the case of depletion (0 <ψ S < 2ψ B ).  In this case, we can ignore electrons and 

holes to find from eqn. (10), 

F(ψ S ) ≅ qψ S

kBTL

−1, 

which, according to eqn. (12) gives 

 

E S ≅ 2qNA

εSi

(ψ S − kBTL / q)  . 

The “exact” result is just like depletion approximation (eqn. (2.161) in [1]) except for kBTL / q  

correction. 

 

Example 2:  Surface Potential vs. Gate Voltage 

Figure 1 is in terms of the surface potential; we vary the surface potential with the gate voltage 

according to:  

VG = VFB +ψ S − QS

Cox

 

where VFB  is the “flat band voltage”.  Consider a p-type, silicon MOS capacitor at room 

temperature with NA = 5×1017cm-3.  Assume VFB = 0, tox = 2 nm,  and κ ox = 4.  Plot the surface 

potential, ψ S vs. gate voltage on the x-axis. 

A Matlab script to perform this calculation is included in the appendix.  The result is shown 

below in Fig. 2. 
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Fig. 2  Surface potential vs. gate voltage. (See the appendix for the Matlab® script that produced 

this plot.) 

 

 

Figure 2 shows that no matter how large the gate voltage is, it is hard to push the surface 

potential very much beyond 2ψ B . 

 

3.  The Semiconductor Capacitance 

Capacitance is the derivative of charge with respect to voltage, so we find the semiconductor 

capacitance as 



Lundstrom 9 10/24/12 

CSi = −dQS

dψ S

= 2qεSi NA ×  

1− e− qψ S /kTL( ) + ni
2

NA

(eqψ S /kTL −1)

2
kBTL

q
e− qψ S /kBTL +ψ S − kBTL

q







+ ni

NA








2
kBTL

q
eqψ S /kBTL −ψ S − kBTL

q




























. (13) 

Under depletion conditions, 0 <ψS < 2ψB and eqn. (13) simplifies to 

CSi = −dQS

dψ S

= qεSi NA

2 ψ S − kBTL / q( ) = εSi

WD

, 

which is the standard depletion approximation result (eqn. (2.174) of [1]) except for the kBTL/q 

correction, which is often neglected.   

 

We can also take the limit of eqn. (13) as ψ S → 0, to find the flat band capacitance as      

CSi(FB) =
ε Si

LD

         (14) 

Equation (13) can be used to evaluate the low frequency MOS CV characteristic.  With a little 

more care, it can also be adapted to evaluate the high frequency CV characteristic too. 

 

4.  MOS Electrostatics II (potential vs. position) 

So far, we have only integrated Poisson’s equation, eqn. (7), once.  To get ψ(x) for a given ψs, 

we need to integrate again.  Recall that 

.       (9) 

We can integrate eqn. (9) to find 
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or 

x = εSi

2kBTL NA

dψ
F(ψ )ψ (x )

ψ S

∫ . 

Finally, it is convenient to write the result as 

x = LD

dψ
kBTL

q
F(ψ )ψ (x )

ψ S

∫  ,       (15) 

where LD is the extrinsic Debye length.  Equation (15) cannot be integrated analytically, so, for a 

given ψ S , select 0 <ψ (x) <ψ S , then numerically integrate (15) to get x. 

 

The next question is:  “How do we compute Qn (ψ s )?”  Well above threshold, QS ≈ Qn , so we 

can get it from eqn. (12), but how would we do it exactly for all bias conditions?  First, recall 

that  

n(x) = ni
2

NA

eqψ (x )/kBTL , 

so 

Qn = q n(x)dx =
0

∞

∫ q
ni

2

NA

eqψ (x )/kBTL

ψ s

0

∫
dx

dψ
dψ . 

 

Since we know the electric field as a function of y from eqn. (9), we find 

Qn = q
ni

2

NA

eqψ /kBTL

2kBTL NA / εSi F(ψ )
dψ

0

ψ S

∫ .     (16) 

 

Consider another question:  “How do we compute the depletion layer charge?”  We know how to 

compute it using the depletion approximation, but how to we do it exactly.  We begin with 
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QD = −q [ NA − p(x)]dx
0

∞

∫ = −qNA 1− e−qψ /kBTL( )
0

∞

∫ dx , 

which we can change the variable of integration to find. 

QD = −qNA

1− e−qψ /kBTL

2kBTL NA / εSi F(ψ )0

ψ s

∫ dψ .     (17) 

 

5.  “Exact” Solution of the MOSFET: 

Taur and Ning discuss the “exact” solution for a long channel MOSFET [1]. These notes amplify 

on their discussion.  Let’s begin by reviewing the derivation of eqn. (6), which applies only 

equilibrium.   

n = nie
(EF −Ei )/kBTL         (18) 

let 

Ei = −qψ (x) − qψ REF         (19) 

and choose 

qψ REF = −EF  .        (20) 

The result is eqn. (6), 

n = ni e
qψ (x )/kBTL  .       (21) 

Out of equilibrium, we have 

n = ni e
Fn x( )−Ei x( ) /kBTL         (22) 

Using eqns. (19) and (20) in eqn. (22), we have 

n(x) = ni e
q ψ (x )+Fn (x )−EF[ ]/kBTL        (23) 

If we define 

qφn ≡ EF − Fn         (24) 

then 
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n(x) = ni e
q ψ (x )−φn (x )[ ]/kBTL .       (25) 

 

In a MOSFET, a positive drain bias will pull Fn  down by qVD  at the drain.  If the source is 

grounded, φn (y = 0) = 0 and φn (y = L) = VD .  The quasi-Fermi potential will vary with distance, 

y, along the channel, but we assume that it is constant with x, at least across the inversion layer.  

In a MOSFET, the holes will stay in equilibrium, so eqn. (5) continues to apply. 

 

 Now, we make the gradual channel approximation, so that a 1D Poisson equation can be 

solved to find Ex (x,y).  Equation (7) becomes 

d2ψ
dx2 = −q

εSi

po(e
−qψ /kBTL −1)− ni

2

NA

eq(ψ −φn )/kBTL −1( )







,    (26) 

which can be integrated to find 

 

E (ψ ,φn ) = ± 2kBTL NA

εSi

F(ψ ,φn )      (27) 

where 

F(ψ ,φn ) = e−qψ /kBTL + qψ
kBTL

−1






+ ni

2

NA

e−qφn /kBTL (eqψ /kBTL −1)− qψ
kBTL







. (28) 

To find the inversion layer density at any point along the channel, 

Qn = −q n(x)dx = −q n(x)
dx

dψ∫
o

∞

∫ dψ        

      

 

= −q
n(x)

E (ψ ,φn )ψ B

ψ s

∫ dψ  

or 

 

Qn (φn ) = −q
n

i

2

NA

eq(ψ −φn )/kBTL

E (ψ ,φn )
dψ

ψ B

ψ S

∫       (29) 
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We should note ψ S varies along the channel.  We determine ψ S from 

VG = VFB +ψ S − QS

Cox

          

or 

 �

VG = VFB +ψ S +
ε
Si
E s ψ S ,φn( )

Cox

 ,       (30) 

Where 
 
E s  is determined from eqn. (27) with ψ = ψ S. 

 

 To summarize, at some location, y, along the channel there is a corresponding φ ˙ n (y) .  

Equation (30) can be solved iteratively for ψ S, given the gate voltage, VG .  Knowing ψ S, we 

determine the corresponding inversion layer charge by integrating eqn. (29) numerically. 

 

 The next question is:  “How do we determine IDS .”  From 

Jn = nµn

dFn

dy
         (31) 

we find 

IDS = µeff

W

L
[−Qn (φn )]dφn

o

VDS

∫        (32) 

which is eqn. (3.10) in Taur and Ning (recall that Taur and Ning use V for φn).  Using eq. (29) in 

eqn. (32), we find 

 

IDS = qµeff

W

L
0

VDS

∫
(ni

2 / NA )eq(ψ −φn )/kBTL

E (ψ ,φn )
dψ

ψ B

ψ S

∫








dφn     (33) 

Equation (33) is the famous Pao-Sah double integral expression for IDS . 

 Equation (33) can be integrated numerically to obtain IDS (VGS ,VDS ).  Note that we made 

the gradual channel approximation, so it applies only to long channel transistors.  Note also, that 

it is valid for the entire VDS  range; the drain current saturates automatically without needing to 
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worry about channel pinch-off.  Finally, note that the double integral expression can be 

converted to a single integral as discussed by Pierret and Shields [2]. 

 

6.  Summary 

A few key things to remember (or look up when you need them) are listed below. 

 

1) Surface electric field for a given surface potential: 

 
 

E s = ± 2kBTL NA

εSi

F(ψ S )         (11) 

where 

 F(ψ ) = e−qψ /kBTL + qψ
kBTL

−1






+ ni

2

NA
2 e+ qψ /kBTL − qψ

kBTL

−1






    (10) 

 

2) Semiconductor charge density for a given surface potential: 

       (12) 

In depletion, eqn. (12) reduces to: 

 QS ≅ 2qεSiNA(ψ S − kBTL / q) , 

which is very close to the depletion approximation, except for the −kBTL / q  correction. 

For strong accumulation, eqn. (12) reduces to: 

 QS ≈ + 2εSikBTL NA e−qψ S /2kBTL (strong accumulation) 

For strong inversion, eqn. (12) reduces to: 

 QS ≈ Qn ≈ + 2εSikBTL ni
2

NA

e+ qψ S /2kBTL  (strong inversion) 

which can also be expressed as 
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 QS ≈ + 2εSikBTL n(0)  

The inversion layer thickness can be estimated as: 

 tinv ≈ 2εSikBTL

q Qn

 

 

3)  Capacitance: 

An analytical expression for the semiconductor capacitance exists as given by eqn. (13).  Under 

flatband conditions, the semiconductor capacitance becomes: 

 CSi(FB) =
ε Si

LD

   (14) 
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Appendix 

 

This appendix contains the Matlab® script that produces Figs. 1 and 2. 

 

% Surface potential vs. Gate voltage for MOS Capaci tor 

% Date: Oct. 23, 2012 

% Author: Xingshu Sun and Mark S. Lundstrom(Purdue University) 

% 

% References 

 

% [1] Mark Lundstrom and Xingshu Sun (2012), "Notes  on the 

Solution of the Poisson-Boltzmann Equation for MOS Capacitors and 

MOSFETs, 2nd Ed." http://nanohub.org/resources/5338 . 

 

%Initialize the range of the surface potential 

psi = -0.2:0.01:1.2; %[V] 

%Specify the physical constants 

 

epsilon_siO2 = 4*8.854*1e-14; %Permittivity of SiO2  [F/cm] 
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epsilon_si = 11.68*8.854*1e-14; %Permittivity of Si  [F/cm] 

k_b = 1.380e-23; %Boltzmann constant [J/K] 

q = 1.6e-19; %Elementary charge [C] 

 

%Specify the environmental parameters 

TL = 300; %Room temperature[K] 

ni = 1e10; %Intrinsic semiconductor carrier density  [cm-3] 

N_A = 5e17; %Acceptor concentration [cm-3] 

tox = 2e-7; %The thickness of SiO2 [cm] 

V_FB = 0; %The flat-band voltage [V] 

 

%Calculate the capacitance 

cox = epsilon_siO2/tox; %[F/cm2] 

 

%Calculate the F function (to calculate the total c harge) with 

respect to different surface potentials.  See: eqn.  (10) in [1] 

 

F_psi1 = exp(-psi*q/k_b/TL) + psi*q/k_b/TL -1; 

F_psi2 = ni^2/N_A^2*(exp(psi*q/k_b/TL) - psi*q/k_b/ TL -1); 

F_psi = sqrt(F_psi1 + F_psi2); 

 

%Initialize the vectors 

psi_length = length(psi); 

Qs = zeros(psi_length,1);  

V_G = zeros(psi_length,1); 

psi_B = zeros(psi_length,1); 
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%Calculate the total charges and the corresponding gate voltages. 

See eqn. (12) in [1] 

 

for i = 1:psi_length 

    if psi(i) <= 0     

        Qs(i) = sqrt(2*epsilon_si*k_b*TL*N_A)*F_psi (i); 

%Calculate charge when the surface potential is neg ative 

 

    else 

        Qs(i) = -sqrt(2*epsilon_si*k_b*TL*N_A)*F_ps i(i); 

%Calculate charge when the surface potential is pos itive 

    end   

 

    psi_B(i) = k_b*TL/q*log(N_A/ni); %Get the bulk potential as a 

reference and it is a constant with respect to VG 

    V_G(i) = V_FB+psi(i)-Qs(i)/cox; %Calculate the gate voltage 

end 

%Plot total charge vs. surface potential (psi_S) 

figure(1) 

semilogy(psi,abs(Qs)/q,'r','linewidth',3); 

hold on 

set(gca, 'xlim', [-0.4 1.4], 'ylim', [1e11 1e14]); 

set(gca,'fontsize',13); 

xlabel('\psi_S (V)'); 

ylabel('|Qs|/q (cm^-2)'); 

%Plot x=0 

plot(zeros(1,21),logspace(10,16,21),'k--') 
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%Plot surface potential (psi_S) vs. gate voltage wi th reference 

potential 2*psi_B  

figure(2) 

h1=plot(V_G,psi,'r','linewidth',3); 

hold on 

h2=plot(V_G,2*psi_B,'--b','linewidth',3); 

set(gca, 'xlim', [-3 10], 'ylim', [-0.4 1.4]); 

set(gca,'fontsize',13); 

legend('\psi_S','2*\psi_B','Location','SouthEast') 

xlabel('V_G (V)'); 

ylabel('\psi_S (V)'); 

 

%Plot x=0 and y=0 

plot(-10:10, zeros(1,21), 'k--') 

plot(zeros(1,21),-10:10, 'k--') 


