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review:  ballistic I-V
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review:  ballistic transport in a MOSFET
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review:  filling states in a ballistic MOSFET
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review:  diffusive transport in a MOSFET
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nanoscale MOSFETs

Nanoscale MOSFETs are neither fully ballistic nor fully 
diffusive; they operate in a ‘quasi-ballistic’ regime.

How do we understand how carrier scattering affects 
the performance of a nanoscale MOSFET?
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current transmission in a MOSFET
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current transmission in a MOSFET
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transmisson in the presence of elastic scattering
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inelastic scattering
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T12 E( )≠ T21 E( )

T12 ′E( )I(E)

S. Datta, Electronic Transport in Mesoscopic Systems, 
Cambridge, 1995. 
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transmision and the IV characteristic
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filling states in a quasi-ballistic MOSFET
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‘reflectionless’
contacts

some states are still filled from the drain, but some are 
now filled by backscattering from source-injected flux.
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outline

1) Review and introduction
2) Scattering theory of the MOSFET
3) Transmission under low VDS

4) Transmission under high VDS

5) Discussion
6) Summary
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scattering theory of the MOSFET

Goal:

To illustrate the influence on scattering on the I-V 
characteristic of a MOSFET by developing a very simple 
theory.

Assumptions:

1) Average quantities, not energy-resolved.

2) Boltzmann statistics for carriers

3) T12 = T21 = T

4) Average velocity of backscattered carriers equals that 
of the injected carriers.
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scattering in a nano-MOSFET
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current
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current

ID =WqnS 0( )υT
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⎠⎟

Exactly the same result we had for the ballistic case, 
but the (- velocity) carrier density at the top of the barrier 
is altered by scattering.
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carrier densities at the top of the barrier
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from carrier densities to drain current
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the MOSFET I-V with scattering

IDS =WCox VGS −VT( )υT
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(ballistic, Boltzmann statistics)
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ID scattering( )≠ TID ballistic( )
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high drain bias

ID
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VDSAT ≈ kBT q

“on-current”

VGS = VDD
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questions

 
ID =WCox VGS −VT( )%υT

1− R( )
1+ R( )

1)  We expected current to be proportional to 
transmission (T = 1 - R), but where does the (1 + R) 
in the denominator come from?  

2) How do we generalize the result for Fermi-Dirac 
statistics?

approximate answer:  
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low drain bias

ID

VDSVDSAT

VGS = VDD
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1− R( )− 1− R( )e−qVDS kBT

1+ R( )+ 1− R( )e−qVDS kBT

⎛

⎝⎜
⎞

⎠⎟

GCH =
ID

VDS

=WCox VGS −VT( ) υT

2 kBT q( )
⎡

⎣
⎢

⎤

⎦
⎥ 1− R( )

GCH scattering( )= TGCH ballistic( )

RCH
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questions

1)  For low VDS, the drain current is proportional to 
transmission (T = 1 - R).  Why in this case but not for 
high VDS?  

2) How do we generalize the result for Fermi-Dirac 
statistics?

approximate answer:  
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summary of the scattering model
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1− R( )
1+ R( )

To proceed, we need to 
understand R VGS ,VDS( )
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outline
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transmission across a field-free slab

mfp = λ0

 E = 0

I1

RI1

TI1

Consider a flux of carriers injected into a field-free slab of length, L.  
The flux that emerges at x = L is T times the incident flux, where 0 < T
< 1.  The flux that emerges from x = 0 is R times the incident flux, 
where T + R = 1, assuming no carrier recombination-generation.

How is T related to the mean-free-path for backscattering within the 
slab?

x
0 L
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transmission

mfp = λ0  E = 0I1 = I + (x = 0)

RI + (x = 0)

TI1(0)

x
0

dI + (x)
dx

= −
I + (x)
λ0

+
I − (x)
λ0

I + (x)
I − (x)

I = I + (x) − I − (x) (constant)

I − (x) = I + (x) − I

dI + (x)
dx

= −
I
λ0

L
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transmission (ii)

mfp = λ  E = 0I1 = I + (x = 0) TI1

RI1

x
0

I + (x)
I − (x)

dI + (x)
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= −
I
λ0

I + (x) = I + (0) − I
x
λ0

I + (x) = I + (0) − I + (x) − I − (x)( ) x
λ0

I + (L) = I + (0) − I + (L) − I − (L)( )L
λ0

I − (L) = 0

absorbing boundary

L
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transmission (iii)

mfp = λ  E = 0I1 = I + (x = 0) TI1

RI1

x
0

I + (x)
I − (x)

I + (L) = I + (0) − I + (L)
L
λ0

absorbing boundary

I + (L) =
I + (0)

1+ L λ0

I + (L)
I + (0)

= T =
λ0

λ0 + L

T → 0 L >> λ0

T → 1 L << λ0

T =
λ0

λ0 + L
R =

L
λ0 + L

L
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mean-free-path

mfp = λ  E = 0I1 TI1

RI1

x

I + (x)
I − (x) absorbing boundary

T =
λ0

λ0 + L

How do we relate λ0 to known parameters?

If I1 is a thermal equilibrium injected flux,
then, it can be shown that:  

I1 = n+ (0)υT

Dn =
kBT
q

μn =
υT

2
λ0

(non-degenerate 
carrier statistics)

L0
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example

position, x

en
er

gy

ε1(x)

low VDS

T ≈
λo

L + λo

≈ 0.15

L

μn ≈ 200 cm2 /V-s

μn =
υT

2 kBT q( )λ0

λ0 ≈ 9 nm

L ≈ 50 nm

I1
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relation to conventional theory

λ0 =
2 kBT q
υT

μn

GCH = WCox VGS −VT( ) υT

2kBT q( )
⎛

⎝⎜
⎞

⎠⎟
1− R( )

(non-degenerate carrier statistics)

GCH =
W
L
μnCox VGS −VT( )

The scattering model works in 
the diffusive limit, as well as 
the ballistic limit, and in the 
quasi-ballistic regime in 
between. 

1− R = T =
λ0

λ0 + L
≈
λ0

L (diffusive limit)
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channel conductance

T =
λ0

λ0 + L

GCH =
W
L

1
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+
1
μB

⎛
⎝⎜

⎞
⎠⎟

−1

Cox VGS −VT( )
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⎠⎟
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⎡

⎣
⎢

⎤

⎦
⎥T

one can show that:
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⎣
⎢

⎤

⎦
⎥
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υT L
2 kBT q

F −1/2 ηF1( )
F 0 ηF1( )

⎡

⎣
⎢

⎤

⎦
⎥
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outline

1) Review and introduction
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3) Transmission under low VDS

4) Transmission under high VDS

5) Discussion
6) Summary



37

transmission under high drain bias

 
ION =WCox VGS −VT( )%υT

1− R( )
1+ R( )

=WCox VGS −VT( )%υT
T

2 − T( )

scattering model:

in practice:

B ≡
ION measured( )
ION ballistic( )

≈ 0.50

B =
T

2 − T( )
→ T ≈ 0.67 >> 0.15 Why?
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transmission across a slab with an electric field

mfp = λ0

 E >> 0

I1

RI1

TI1

When the electric field is strong and position-dependent and several 
scattering mechanisms operate, this turns out to be a difficult problem.

How can we understand the essential physics?

x
0 L
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transport “downhill”

Peter J, Price, “Monte Carlo calculation of 
electron transport in solids,”
Semiconductors and Semimetals, 14, pp. 
249-334, 1979

‘critical layer’

T =
λo

l + λo

EC (x)
T ≈ 1:
High field regions are 
good carrier collectors.

I1

TI1

L

<< L
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field-free region followed by high-field region

T =
λo

WB + λo

EC (x)

I1 TI1

near-perfect collector
T ~ 1

x
The base-collector of a bipolar transistor is a low-field region 
followed by a high-field region.  Transmission is controlled 
by the low-field region.

WB
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transport in a MOS transistor

 
T ≈

λo

l + λo

TI1

x

high VDS 

  ε1(x)

I1

E

1) A MOSFET consists of a low-field 
region near the source that is 
strongly controlled by the gate 
voltage, and a high-field region 
near the drain that is strongly 
controlled by the drain voltage.

2) Transmission is controlled by the 
low-field region near the source.

3) Scattering near the drain has a 
smaller effect on backscattering  to 
the source.

4) In contrast to a bipolar transistor, 
the division between the low and 
high field regions is not sharp.

RI1
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bias-dependent transmission

ε1(x)

low VDS

T ≈
λo

L + λo

≈ 0.15

L

I1

 
T ≈

λo

l + λo

≈ 0.67

x

E
high VDS

 ε1(x)

I1

x

E
<< L



43

outline

1) Review and introduction
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4) Transmission under high VDS
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6) Summary



44

computing the critical length

T ≈
λo

l + λo

TI1

x

high VDS 

  ε1(x)

I1

E
Assuming near-equilibrium transport 
in the low-field region (i.e. DD), one 
can show that the critical length is 
the distance over which the channel 
potential drops by kBT/q

Two key assumptions:
1) near-equilibrium
2) Boltzmann statistics

“kT layer” ≈ LkbT
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physics of elastic back-scattering

p’
?

X

first scattering
event

1 2 mυx
2 > qΔV (x1)

longitudinal energy

ε1(x)

Ei

E

x

qΔV (x1)

x1

pi p

px

py
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physics of elastic back-scattering

X
?

first scattering 
event

qΔV (l ) ≈ Ei − ε1 0( )ε1(x)

qΔV (x1)

Ei

E

xx1

probability of returning to the 
source is high

probability of returning to the 
source is low

x1 < l

x1 > l

See:  Lundstrom and Ren,
IEEE Trans. Electron Dev, 49, pp. 
133-141, 2002.
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physics of elastic back-scattering

X
?

first scattering 
event Ei − ε1 0( ) = kBT

ε1(x)

ΔV (x1)

Ei

E

xx1 See:  Lundstrom and Ren,
IEEE Trans. Electron Dev, 49, pp. 
133-141, 2002.

For non-degenerate carriers,

 qΔV (l ) ≈ kBT

Above threshold, however,

Ei − ε1 0( ) > kBT
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role of inelastic scattering

X
?

first scattering 
event

ε1(x)

Ei

E

x

ω

If an electron 
backscatters by emitting 
a phonon, it is less likely 
to return to the source -
even if it is pointed in the 
right direction. 

 LkBT → "hω  length"

K. Natori, IEEE Electron Dev. Lett., 
23, pp. 655-657, 2002.
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drift-diffusion picture

ID =WCox υ(0) VGS −VT( )

 

1
υ(0)

=
1
υT

+
1

Dn l
Dn = kBT / q( )μn

ε1 x( )

x

E
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drift-diffusion vs. scattering model

 
ID =WCox

1
υT

+
1

Dn l( )
⎡

⎣
⎢

⎤

⎦
⎥

−1

VGS −VT( )

ID =WCox
T

2 −T
υT VGS −VT( )

drift-diffusion

scattering

Dn =υTλ0 2 T =
λ0

λ0 + l
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Monte Carlo simulations

Detailed, numerical simulations confirm the basic physical picture 
that we have presented, but they show that the critical layer is
somewhat longer than LkT and that it depends on the shape of the 
potential profile.  Under some conditions, inelastic scattering can 
even increase the d.c. current.

See, for example:

P. Palestri, R. Clerc, D. Esseni, L. Lucci, and L. Selmi, “Multi-subband
Monte Carlo investigation of the mean free path and of the kT layer in 
degenerated quasi-ballistic nanoMOSFETs, IEDM Tech. Dig.,pp. 945-948, 
Dec. 2006.

Raseong Kim and Mark Lundstrom, “Physics of carrier backscattering in 
one- and two-dimensional nanotransistors,” submitted for publication, 
June, 2008.
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1) Review and introduction
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summary

1) Modern MOSFETs operate between the ballistic 
and diffusive limits, so we need to understand 
transport in the quasi-ballistic regime.

2) Transmission (or scattering) theory provides a 
simple, physical description of quasi-ballistic 
transport.

3) The same physics can also be understood at the 
drift-diffusion level.

4) Quantitative treatments require detailed numerical 
simulation.
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