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review

1) In Lecture 3, we generalized

to include Fermi-Dirac statistics:

  
ID =WCox VGS −VT( )%υT

1-F 1/2 ηF2( ) F 1/2 ηF1( )
1+F 0 ηF2( ) F 0 ηF1( )

⎡

⎣
⎢

⎤

⎦
⎥

ID =WCox VGS −VT( )υT
1− e−qVDS /kBT

1+ e−qVDS /kBT

⎛
⎝⎜

⎞
⎠⎟
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review

2) We also discussed key device parameters for ballistic 
MOSFETs:

-ballistic injection velocity
-ballistic on-current
-ballistic channel resistance
-ballistic drain saturation voltage
-ballistic mobility
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what approximations did we make?

1) semiclassical approach (no quantum transport)

2) used a bulk E(k) within the device

3) assumed parabolic energy bands

4) ignored scattering

5) …
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questions

1) How do we treat more realistic band structures 
(e.g. the conduction band of Si?)

2) How to we treat subthreshold conduction and 2D 
electrostatics?

These questions are addressed in this lecture (Part 2)
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about effective masses

 
N2D =

m*kBT
πh2 #/cm2

 
%υT ≡

2kBT
πm*

F 1/2 ηF1( )
F 0 ηF1( )

For carrier densities, we should use a density-of-states 
effective mass.

For velocities we should use a conductivity effective mass.

The values of these masses depend on the material and 
the channel orientation.

Let’s work this out for the simplest case:  (100) Si.
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example:  (100) Silicon

kx
ml

* = 0.9m0

mt
* = 0.19m0

confinement masses:  mconf
* = mzz

*

ky

kz

unprimed

Si conduction band

primed

 unprimed: mconf
* = ml

* primed: mconf
* = mt

*

kx

ky

E =
h kx

2 + ky
2( )

2mt
*

kx

ky E =
hkx

2

2mxx
* +

hkx
2

2myy
*
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example:  ellipsoidal energy bands

To see how we determine the DOS and conductivity 
effective masses, let’s re-examine our derivation from the 
beginning - with the drain current:

ID =
2q
h

M (E) f1 − f2( )dE
ε1 0( )

∞

∫

So we begin with M(E).
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conducting channels:  (100) Si [100] transport

 
M (E) =W g1D E( )

ε1 (0)

E

∫ dE =WgV

2myy
* E − ε1(0)[ ]
πh

x

yz W
TSi

 
g1D (E) = gV ×

1
πh

myy
*

2 E − ε1(0)[ ] #/eV-cm

M(E) = number of transverse modes in the y-
direction with cut-off energy less than E.

(Divided by 2 to account for 
the fact the spin has already 
been included in the current 
formula.)

[100] transport direction
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current:  (100) Silicon [100] transport

  
ID =WqgV

myy
* kBT

2πh2

⎛

⎝⎜
⎞

⎠⎟
2kBT
πmyy

* F 1/2 ηF1( )−F 1/2 ηF2( )⎡⎣ ⎤⎦

ID =
2q
h

M (E) f1 − f2( )dE
ε1 0( )

∞

∫

To find the drain current, we integrate:

The drain current depends on myy, which is different for 
each type of valley.
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recall: carrier densities in 2D

To find the 2D carrier density, 
we integrate:

nS
+ 0( )= D2 D (E)

2
f0 EF1( )dE

ε1 (0)

ε1 (top )

∫

 
nS
+ 0( )= N2D

2
F 0 ηF1( )

 
N2D =

mD
* kBT
πh2 #/cm2  

D2 D E( )= gV

mxx
* myy

*

πh2

mD
* = gV mxx

* myy
*

mxx
* ≠ myy

*

kx

ky

mxx
* = myy

*

D2 D E( )= mD
*

πh2
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example:  (100) Silicon [100] transport

Drain current:

  
ID =WqgV

myy
* kBT

2πh2

⎛

⎝⎜
⎞

⎠⎟
2kBT
πmyy

* F 1/2 ηF1( )−F 1/2 ηF 2( )⎡⎣ ⎤⎦

Carrier density:

 
nS 0( )= N2D

2
F 0 ηF1( )+F 0 ηF2( )⎡⎣ ⎤⎦

Velocity:

 
υ =

ID

WqnS

=
2kBT
πmxx

*

F 1/2 ηF1( )−F 1/2 ηF 2( )⎡⎣ ⎤⎦
F 0 ηF1( )+F 0 ηF2( )⎡⎣ ⎤⎦

N2D =
mD

* kBT
πh2 #/cm2

mD
* = gV mxx

* myy
*

mC
* = mxx

*
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example:  (100) Silicon [100] transport

mxx
* = myy

* = mt
* = 0.19m0

the unprimed subbands will be the lowest because:

mC
* = mt

*mD
* = 2mt

*

mconf
* = ml

*

the primed subbands are higher in energy because: mconf
* = mt

*

mxx
* ≠ myy

* mD
* = 4 mt

*ml
*

 mC
* = 4 mt

−1/2 + ml
−1/2⎡⎣ ⎤⎦

−2
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more generally (for ellipsoidal energy bands)

For arbitrary crystallographic orientations with different 
confinement and transport directions, there will be 
different degeneracy factors, and different effective 
masses, mxx

* ,myy
* ,mzz

*

In each case, the appropriate density-of-states and 
conductivity effective masses can be obtained.

 mC
* = 2mt

*ml
* mt

* + ml
*( )

For example, the standard transport direction for (100) 
Si is [110].  For the unprimed subbands, things don’t 
change, but for the primed bands, the conductivity mass 
changes to:



17
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subbands and modes

x

yz W TSi

There is a set of subbands
associated with confinement 
in the z-direction.

For each subband associated with 
confinement in the z-direction, there is also 
a set of subbands (modes) associated with 
confinement in the y-direction.
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E

x
E C (x)

ηF1
i ≡ EF1 − εi (0)( ) kB

multiple subbands

T

ηF2
i ≡ ηF1

i − qVDS kB T

ε1(x)
ε2 (x)
ε3(x)

Each subband associated with confinement in the z-direction has many 
independent transverse modes (assuming there is no potential variation 
in the y-direction, the width of the MOSFET).
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E

x
E C (x)

ηF1
i ≡ EF1 − εi (0)

multiple subbands

( ) kB T

ηF2
i ≡ ηF1

i − qVDS kB T

ε1(x)
ε2 (x)
ε3(x)

Each subband associated with confinement in the z-direction can be 
treated as an independent conduction channel (with many transverse 
modes) as long as the potential variation in the x-direction is gentle.



22

treating multiple subbands

 
nS (0) =

N2D
i

2
F 0 ηF1

i( )+F 0 ηF2
i( )⎡⎣ ⎤⎦

i
∑

ηF1
i ≡ EF1 − ε i (0)( ) kB T ηF2

i ≡ ηF1
i − qVDS kB T

 
ID =Wq

N2 D
i

2
υT

i⎛
⎝⎜

⎞
⎠⎟

F 1/2 ηF1
i( )−F 1/2 ηF2

i( )⎡⎣ ⎤⎦
i
∑

For independent subbands, we can simply add up the 
contributions to the current and carrier density from 
each subband.
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ideal MOS electrostatics

x

ε1(0)

ε1(x)

ε1(x)

VD

VS

ψ S

VG

ε1(0) = ε10 − qψ S

the gate voltage controls the 
surface potential (i.e. the top 
of the energy barrier).
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2D MOS electrostatics

x

ψ Sε1(0)

ε1(x)

VG

ε1(x)

VD

VS

the drain voltage also affects 
the surface potential (i.e. the 
top of the energy barrier).

DIBL
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capacitor model for 2D electrostatics

x

ψ S
CDBCSB

CGB

ε1(x)

CD

ε1(x)

VG

VD
VS

CD is the depletion capacitance of the semiconductor.  If, for 
example, the MOSFET is an undoped, ultra-thin body structure, 
then there would be no depletion capacitance. 

subthreshold
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capacitor model (ii)

 
ψ S = VG

CGB

CΣ

⎛
⎝⎜

⎞
⎠⎟
+VD

CDB

CΣ

⎛
⎝⎜

⎞
⎠⎟
+VS

CSB

CΣ

⎛
⎝⎜

⎞
⎠⎟
−

q nS ψ S( )− nS0⎡⎣ ⎤⎦WL
CΣ

VG

VDVS

CDB
CSB

ψ S  CGB = CoxWL

 Q = −q nS − nS0( )WLUTB SOI structure
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solving the capacitor model

 
ψ S = VG

CGB

CΣ

⎛
⎝⎜

⎞
⎠⎟
+VD

CDB

CΣ

⎛
⎝⎜

⎞
⎠⎟
+VS

CSB

CΣ

⎛
⎝⎜

⎞
⎠⎟
−

q nS ψ S( )− nS0⎡⎣ ⎤⎦WL
CΣ

(1)

Eqn. (1) is a nonlinear 
equation for ψS.  It can be 
solved by iteration.

 
nS 0( )= N2 D

2
F 0 ηF1( )+F 0 ηF2( )⎡⎣ ⎤⎦

ηF1 ≡ EF1 − ε1(0)[ ] kB T

ηF2 = ηF1 − qVDS kBT

ε1(0) = ε10 − qψ S

(ε10 is the value of ε1(0) when ψS = 0 
i.e. ‘flatband’ conditions.)
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solving for ID

ηF1 ≡ EF1 − ε10 + qψ S[ ] kB T ηF2 = ηF1 − qVDS kBT

(1)

 
ID =Wq

N2 D

2
υT

⎛
⎝⎜

⎞
⎠⎟

F 1/2 ηF1( )−F 1/2 ηF 2( )⎡⎣ ⎤⎦ (2)

For a given VG and VD (VS = 0): 

1) Solve (1) for ψS

2) Solve (2) for ID

(~Treats 2D MOS electrostatics,  
above and below threshold.)

 
ψ S = VG

CGB

CΣ

⎛

⎝⎜
⎞

⎠⎟
+VD

CDB

CΣ

⎛

⎝⎜
⎞

⎠⎟
+VS

CSB

CΣ

⎛

⎝⎜
⎞

⎠⎟
−

q nS ψ S( )− nS0⎡⎣ ⎤⎦WL
CΣ
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how do we determine the capacitors?

VD = 1.2 V

VD = 0.05 V

can do this from measured or simulated data

CGB

CDB

CSB or CΣ = CGB + CDB +CSB( )

must specify:
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how do we determine the capacitors?

S = 2.3
CΣ

CGB

kBT q( )

DIBL =
CDB

CGB

under high drain bias:

 
ID ≈Wq

N2 D

2
υTF 1/2 ηF1( )

under subthreshold conditions:

ID ≈WqN2 DυT eηF1 ~ e EF −ε1 (0)( ) kBT

ε1(0) = ε10 − qψ S

DIBL =
αD

αG

S =
2.3 kBT q( )

αG

αG =
CGB

CΣ

αD =
CDB

CΣ

ID ~ eqψ S kBT
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FETToy

The theory outlined here has been implemented in FETToy, 
a simulation tool that you can run on nanoHUB.org.  You 
can also download the program to see how the theory is 
implemented.
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an aside on MOS electrostatics

qnS 0( )

VG

Cox VG −VT( )

in part 1), we assumed ideal, 1D, MOS electrostatics:
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an aside on MOS electrostatics (ii)

capacitor model:

 
ψ S = VG

CGB

CΣ

⎛

⎝⎜
⎞

⎠⎟
+VD

CDB

CΣ

⎛

⎝⎜
⎞

⎠⎟
+VS

CSB

CΣ

⎛

⎝⎜
⎞

⎠⎟
−

q nS ψ S( )− nS0⎡⎣ ⎤⎦WL
CΣ

1D MOS electrostatics:

ψ S = VG −
q nS ψ S( )− nS0⎡⎣ ⎤⎦

Cox

also, for high drain bias:

 
nS (0) =

N2 D

2
F 0 ηF1( )

1( )

2( )

Eqns. (1) and (2) can be 
solved for ψS(VG) and for 
nS(VG).

(assuming strong carrier 
degeneracy)



36

an aside on MOS electrostatics (iii)

results:

ψ S =ψ S0 +
VG

1+ CQ Cox

nS =
CoxCQ

Cox + CQ

VG −VT( )

“quantum capacitance”

 
CQ =

q2mD
*

2πh2

CG VG −VT( )

qnS 0( )

Cox VG −VT( )

VG

CG =
CoxCQ

Cox +CQ

Cox

CQ

VG
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an aside on MOS electrostatics (iv)

CG =
CoxCQ

Cox + CQ

IDS

VGS = VDD

 ION =WCG %υT VGS −VT( )

 
CQ =

q2mD
*

2πh2

CQ → CS ≡
εox

tinv

more generally:
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an aside on MOS electrostatics (v)

qnS (0) = CG VG −VT( )= CoxCQ

Cox + CQ

VG −VT( ) CQ =
q2m*

2πh2

 
%υT ≡

2kBT
πm*

F 1/2 ηF1( )
F 0 ηF1( )

Small effective mass means high injection velocity.  :-)

Small effective mass means low inversion layer density.  :-(

ID =WQI (0) υ(0)
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“density-of-states bottleneck”

M. V. Fischetti and S. E. Laux, “Monte Carlo simulation of transport in
technologically significant semiconductors of the diamond and zinc-
blende structures-Part II: Submicrometer MOSFET’s,” IEEE Trans. 
Elect. Dev., 38, 1991.

P. M. Solomon, and S.E. Laux, “The ballistic FET: Design, capacitance 
and speed limit,” in IEDM Tech. Dig., Dec. 2001.
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source electrostatics

Note that the 
conduction band in 
the source drops 
slightly as VGS
increases.  Why?

nanoMOS simulationThe reason has to do 
with the electrostatics 
of the source under 
ballistic conditions.

A. Rahman, et al., IEEE TED, 50, 1853, 2003.
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source electrostatics (ii)

The total electron 
density in the 
source is equal to 
the total dopant
density.

A. Rahman, et al., IEEE TED, 50, 1853, 2003.

Electrons are 
injected from the 
contact into the 
ballistic source. 
Most reflect off of 
the barrier, so +k 
and -k states are 
occupied.
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source electrostatics (iii)

This cannot be the 
correct band 
diagram, because 
the total electron 
charge is now less 
than the total 
dopant charge.

A. Rahman, et al., IEEE TED, 50, 1853, 2003.

Under high gate 
bias, less reflection 
occurs and fewer -
k states are 
occupied.

ε1 0( )
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source electrostatics (iv)

Charge balance in 
the source has 
been restored, but 
the top of the 
barrier is now 
lower, so ID is 
higher. A. Rahman, et al., IEEE TED, 50, 1853, 2003.

To satisfy the 
Poisson equation, 
the conduction 
band in the source 
moves down to let 
more +v electrons 
in.

conduction band 
‘floats’ down. 
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source electrostatics (v)

For a discussion of how to treat these “floating source” effects in our 
“top of the barrier model,” see:

Anisur Rahman, Jing Guo, Supriyo Datta, and Mark Lundstrom, 
“Theory of Ballistic Nanotransistors,” IEEE Trans. Electron. Dev., 
Nanoelectronics, 50, pp. 1853-1864, 2003.
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numerical simulation

Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, and Mark S. 
Lundstrom, “nanoMOS 2.5: A Two-Dimensional Simulator for Quantum Transport in 
Double-Gate MOSFETs,” IEEE Trans. Elec. Dev.,  50, pp. 1914-1925, 2003.

source

n++source 
contact
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“source exhaustion”

E

ε1(x)

x

E F1

E F2

qVDS

gate voltage pushes barrier 
down, current increases.

at high gate voltage, barrier 
is eliminated, gm plummets.

QI max( )= qNDSx j

This effect can be 
important when the 
source is not heavily 
doped, for example, in 
a III-V FET.

Another view: The 
charge in the channel 
cannot be greater than 
the charge in the 
source.
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source exhaustion comments

Source exhaustion, as I have described is it is purely electrostatic 
effect that is present in a ballistic or drift-diffusion model.

Another effect, “source starvation,” which has to do with the 
injection of carriers from the 3D contact to the 2D channel, 
may also be important.

See:

M. Fischetti, T. O’ Reagan, S. Narayanan, C. Sachs, S. Jin, 
J. Kim, and Y. Zhang,“Theoretical study of some physical 
aspects of electronic transport in nMOSFETs at  the 10-nm 
gate-length,” IEEE Trans. Elect. Dev., 54, 2007.
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summary

We have generalized

to include 2D and subthreshold electrostatics as well as 
the effect of the quantum capacitance above threshold:

  
ID =WCox VGS −VT( )%υT

1-F 1/2 ηF2( ) F 1/2 ηF1( )
1+F 0 ηF2( ) F 10 ηF1( )

⎡

⎣
⎢

⎤

⎦
⎥

ψ S = VG
CG

CΣ

⎛

⎝⎜
⎞

⎠⎟
+VD

CD

CΣ

⎛

⎝⎜
⎞

⎠⎟
+VS

CS

CΣ

⎛

⎝⎜
⎞

⎠⎟
−

qnS ψ S( )
CΣ

 
ID =Wq

N2D

2
υT

⎛
⎝⎜

⎞
⎠⎟

F 1/2 ηF1( )−F 1/2 ηF2( )⎡⎣ ⎤⎦

and we discussed some of the implications.
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suggested exercise:  subthreshold conduction

ηF1 ≡ EF1 − ε10 + qψ S[ ] kB T ηF2 = ηF1 − qVDS kBT

 
ID =Wq

N2 D

2
υT

⎛
⎝⎜

⎞
⎠⎟

F 1/2 ηF1( )−F 1/2 ηF 2( )⎡⎣ ⎤⎦

 
ψ S = VG

CGB

CΣ

⎛
⎝⎜

⎞
⎠⎟
+VD

CDB

CΣ

⎛
⎝⎜

⎞
⎠⎟
+VS

CSB

CΣ

⎛
⎝⎜

⎞
⎠⎟
−

q nS ψ S( )− nS0⎡⎣ ⎤⎦WL
CΣ

Exercise: Simplify for 1D electrostatics and subthreshold
conduction and derive the subthreshold I-V characteristics of 
a ballistic MOSFET.
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suggested exercise:  bulk MOSFET

ηF1 ≡ EF1 − ε10 + qψ S[ ] kB T ηF2 = ηF1 − qVDS kBT

 
ID =Wq

N2 D

2
υT

⎛
⎝⎜

⎞
⎠⎟

F 1/2 ηF1( )−F 1/2 ηF 2( )⎡⎣ ⎤⎦

 
ψ S = VG

CGB

CΣ

⎛
⎝⎜

⎞
⎠⎟
+VD

CDB

CΣ

⎛
⎝⎜

⎞
⎠⎟
+VS

CSB

CΣ

⎛
⎝⎜

⎞
⎠⎟
−

q nS ψ S( )− nS0⎡⎣ ⎤⎦WL
CΣ

Exercise: Repeat the derivation and develop a top of the 
barrier model for a bulk MOSFET.
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