Chapter 3: Structure of Metals and Ceramics

Goals

- Define basic terms and give examples of each:
- Lattice
- Basis Atoms (Decorations or Motifs)
- Crystal Structure
- Unit Cell
- Coordination Numbers
- Describe hard-sphere packing and identify cell symmetry
- Crystals density: the mass per volume (e.g. g/cm ${ }^{3}$).
- Linear Density: the number of atoms per unit length (e.g. cm^{-1}).
- Planar Densities: the number of atoms per unit area (e.g. cm^{-2}).

MSE MSE 280: Introduction to Engineering Materials
©D.D. Johnson 2004, 2006-08

MSE MSE 280: Introduction to Enginering Materials
©.D. Johnson 2004, 2006-08 I

Chapter 3: Structure of Metals and Ceramics

Learning Objective

- Know and utilize definitions to describe structure and defects in various solid phases (crystal structures).
- Compute densities for close-packed structures.
- Identify Symmetry of Cells.
- Specify directions and planes for crystals and be able to relate to characterization experiments .
M.SE MSE 280: Introduction to Engineering Materials ©., Johnson 2004, 2006-08

Crystalline Solids: Unit Cells

It's geometry!
Unit Cell: The basic structural unit of a crystal structure. Its geometry and atomic positions define the crystal structure.
A unit cell is the smallest component of the crystal that reproduces the whole crystal when stacked together with purely translationa repetition.

Note

More than one unit cell can be chosen for a given crystal structure but by convention/convenience the one with the highest symmetry is chosen.

Fig. 3.1 Atomic configuration in Face-Centered-Cubic Arrangement

Several GIFS that follow were taken from Dr. Heyes (Oxford) excellent webpage.
http://www.chem.ox.ac..uk/ici/heyes/structure_of_solids/Strucsol. html
MSE MSE 280: Introduction to Engineering Materials \quad ©D.D. Johnson 2004, 2006

Crystalline Solids: Unit Cells

Important Note:

- Lattice points are a purely mathematical concept, whereas atoms are physical objects.
- So, don't mix up atoms with lattice points,
- Lattice Points do not necessarily lie at the center of atoms.

For example, the only element exhibiting Simple Cubic structure is Po. In Figure (a) is the 3-D periodic arrangement of Po atoms, and Figure (b) is the corresponding space lattice.

In this case, atoms lie at the same point as the space lattice.

MSE
Climeis
MSE 280: Introduction to Engineering Materials ©.D. Johnson 2004, 2006-08

Crystalline Solids: Unit Cells
A Space LATTICE is an infinite, periodic array of mathematical points, in which each point has identical surroundings to all others.

		Possib	Crystal Clas	
	Table $3.6 \quad \mathrm{La}$	etries for etries for the	ionships and Figure n Crystal Systems	ing Unit Cell
	Crystal System	Axial Relationships	Interaxial Angles	Unit Cell Geometry
	Cubic	$a=b=c$	$\alpha=\beta=\gamma=90$	
	Hexagonal	$a=b \neq c$	$\alpha=\beta=90^{\circ}, \gamma=120$	
	Tetragonal	$a=b \neq c$	$\alpha=\beta=\gamma=90$	
MSE Llimais	MSE 280: Introdu	to Engineering M	als ©.D	on 2004,2006-08

Unit Cells Types

A unit cell is the smallest component of the crystal that reproduces the whole crystal when stacked together with purely translational repetition.

$$
\begin{aligned}
& \text { - Primitive (P) unit cells contain only a single lattice point. } \\
& \text { - Internal (I) unit cell contains an atom in the body center. }
\end{aligned}
$$

- Internal (I) unit cell contains an atom in the body center.
- Face (F) unit cell contains atoms in the all faces of the planes composing the cell.
- Face (F) unit cell contains atoms in the all faces of the planes composing
- Centered (C) unit cell contains atoms centered on the sides of the unit cell.

Face-Centered

End-Centered

\int^{8} Body-Centered

Sometimes it is convenient to define a non-primitive unit cell to reveal overtly the higher symmetry
-Then, one has to count carefully "how many atoms are in unit cell" (see next).
Combining 7 Crystal Classes (cubic, tetragonal, orthorhombic, hexagonal, monclinic, triclinic, trigonal) with 4 unit cell types (P, I, F, C) symmetry allows for only 14 types of 3-D lattice. KNOW THIS!

MSE MSE 280: Introduction to Engineering Materials
©D.D. Johnson 2004, 2006-0:

Unit Cells Types

- Often it's convenient to define a non-primitive unit cell to reveal overtly the higher symmetry - Then, one has to count carefully "how many atoms are in unit cell" (see next)

Cube (showing cubic symmetry w/4atoms/cell)

Combining 7 Crystal Classe
(cubic, tetragonal, orthorhombic, hexagonal, monclinic, triclinic, trigonal) with 4 unit cell types (P, I, F, C) symmetry allows for only 14 types of 3-D lattice.

Combining these 14 Bravais lattices with all possible symmetry elements (such as rotations, translations, mirrors, glides, etc.) yields 230 different Space Groups!
MSE MSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08

Counting Number of Atoms Per Unit Cell
Simple 2D Triangular Lattice Lattice showing primitive unit cell (in red)

Self-Assessment: Why can't the blue triangle be a unit cell?
Counting Lattice Points/Atoms in 2D Lattices

- Unit cell is Primitive (1 lattice point) but contains 2 atoms in the Basis.
- Atoms at the corner of the 2 D unit cell contribute only $1 / 4$ to unit cell count
- Atoms within the 2D unit cell contribute 1 as they are entirely contained inside.
MSE MSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08

Unit Cells and Volume Packing
What are basic structural parameters,
e.g. lattice constant or side of cube?
How many atoms per cell?
What is volume per cell?
What is the atomic packing factor (APF)?
What is the closed-packed direction?
What are (linear) densities of less
close-packed directions?
What are planar densities of every plane?
It's all geometry.
- Need to relate cube dimension "a" to
- Packing of ideal spherical atoms of radius "R".
Face-Centered-Cubic

$\left.\begin{array}{l}\text { Atomic Packing Fraction for FCC } \\ \text { APF = vol. of atomic spheres in unit cell } \\ \text { total unit cell vol. }\end{array} \begin{array}{l}\text { Face-Centered-Cubic } \\ \text { Arrangement }\end{array}\right]$

ABCABC.... repeat along <111> direction gives Cubic Close-Packing (CCP)

- Face-Centered-Cubic (FCC) is the most efficient packing of hard-spheres of any lattice.
- Unit cell showing the full symmetry of the FCC arrangement : $a=b=c$, angles all 90°

4 atoms in the unit cell: $(0,0,0)(0,1 / 2,1 / 2)(1 / 2,0,1 / 2)(1 / 2,1 / 2,0)$
Self-Assessment: Write FCC crystal as BCT unit cell.

MSE	MSE 280: Introduction to Enginering Materials	©D.D. Johnson 2004, 2006-08

A less close-packed structure is Body-Centered-Cubic (BCC).
Besides FCC and HCP, BCC structures are widely adopted by metals.

Body-Centred Cubic

Unit cell showing the full cubic symmetry of the $B C C$ arrangement. BCC: $a=b=c=a$ and angles $\alpha=\beta=\gamma=90^{\circ}$
2 atoms in the cubic cell: $(0,0,0)$ and ($1 / 2,1 / 2,1 / 2$).

MSE MSE 200: Introduction to Engineering Material
©D.D. Johnson 2004, 2006-08
I

ABABAB.... repeat along <111> direction gives Hexagonal Close-Packing (HCP

- Unit cell showing the full symmetry of the HCP arrangement is hexagonal

Hexagonal: $a=b, c=1.633 a$ and angles $\alpha=\beta=90^{\circ}, \gamma=120$
2 atoms in the smallest cell: $(0,0,0)$ and $(2 / 3,1 / 3,1 / 2)$.

MSE
LSE

Packing Densities in Crystals: Lines Planes and Volumes

Linear Density in FCC

$L D=$ Number of atoms centered on a direction vector
Length of the direction vector
Example: Calculate the linear density of an FCC crystal along [1110].

ASK
a. How many spheres along blue line?
b. What is length of blue line?

ANSWER
a. 2 atoms along $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ in the cube.
b. Length $=4 \mathrm{R}$
$L D_{110}=\frac{2 \text { atoms }}{4 R}=\frac{1}{2 R}$
(b)

Self-assessment: Show that $L D_{100}=\sqrt{ } 2 / 4 R$.

Self-assessment: Show that $\mathrm{LD}_{100}=\sqrt{ } \mathbf{2} / 4 \mathrm{R}$.			
MSE	MSE 280: Introduction to Engineering Materials	©D.D. Johnson 2004, 2006-08	

Planar Density in FCC

$$
\mathrm{PD}=\text { Number of atoms centered on a given plane }
$$

Area of the plane

Example: Calculate the PD on (1 10) plane of an FCC crystal.

Planar Packing Density in FCC

PPD $=\xrightarrow[\text { Area of atoms centered on a given plane }]{ }$
Example: Calculate the PPD on (1 10) plane of an FCC crystal.

- Find area filled by atoms in plane: $\mathbf{2 \pi R ^ { 2 }}$ - Find Area of Plane: 8 ${ }^{2} \mathbf{~ R}{ }^{\mathbf{2}}$

Hence, $P P D=\frac{2 \pi R^{2}}{8 \sqrt{2} R^{2}}=\frac{\pi}{4 \sqrt{2}}=0.555$
Always independent of R!
Self-assessment: Show that $\operatorname{PPD}_{100}=\pi / 4=0.785$.

MSE	MSE 280: Introduction to Engineering Materials	©.D. Johnson 2004, 2006-08	I

Theoretical Density, ρ

$$
\begin{aligned}
& \text { \# atoms/unit cell } \\
& \qquad \rho=\frac{n A^{\text {Atomic weight (} \mathrm{g} / \mathrm{mol} \text {) }}}{V_{\mathrm{C}} \mathbf{N}_{\mathrm{A}}} \text {. Avogadro's number }
\end{aligned}
$$

$$
\left(\mathrm{cm}^{3} / \text { unit cell }\right)
$$

Example: Copper

Data from Table inside front cover of Callister (see next slide):

- crystal structure = FCC: 4 atoms/unit cell
- atomic weight $=63.55 \mathrm{~g} / \mathrm{mol}(1 \mathrm{amu}=1 \mathrm{~g} / \mathrm{mol})$
- atomic radius $\mathrm{R}=0.128 \mathrm{~nm} \quad(1 \mathrm{~nm}=10 \mathrm{~cm}) 7$

$$
V_{C}=a^{3} ; \text { For FCC, } a=4 R / \sqrt{2} ; V_{C}=4.75 \times 10^{-23} \mathrm{~cm}^{3}
$$

Result: theoretical $\rho \mathrm{Cu}=8.89 \mathrm{~g} / \mathrm{cm}^{3}$
Compare to actual: $\rho \mathrm{Cu}=8.94 \mathrm{~g} / \mathrm{cm}^{3}$

MSE	MSE 280: Introduction to Engineering Materials	©.D. Johnson 2004, 2006-08	IThen

SUMMARY

- Materials come in Crystalline and Non-crystalline Solids, as well as Liquids/Amoprhous. Polycrystals are important.
- Crystal Structure can be defined by space lattice and basis atoms (lattice decorations or motifs).
- Only 14 Bravais Lattices are possible. We focus only on FCC, HCP, and BCC, I.e., the majority in the periodic table and help determine most CERAMIC structures.
- Crystal types themselves can be described by their atomic positions, planes and their atomic packing (linear, planar, and volumetric packing fraction)
- We now know how to determine structure mathematically. So how to we do it experimentally? DIFFRACTION.

$$
\rho_{\text {metals }} \geq \rho_{\text {ceramics }} \geq \rho_{\text {polymers }}
$$

Metals have...

- close-packing
(metallic bonds)
- large atomic mass

Ceramics have..

- less dense packing
covalent bonds)
- often lighter elements

Polymers have...

- poor packing
often amorphous)
- lighter elements (C,H,O)

Composites have...

- intermediate values

MSE MSE 280: Introduction to Engineering Materials
©D.D. Johnson 2004, 2006-08

LSE MSE 2sa, introduction
MSE MSE 280: Introduction to Engineering Materials ©.D. Johnson 2004, 2006-08

