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Chapter 3:  Structure of Metals and Ceramics

Goals

– Define basic terms and give examples of each:
• Lattice
• Basis Atoms  (Decorations or Motifs)
• Crystal Structure
• Unit Cell
• Coordination Numbers

– Describe hard-sphere packing and identify cell symmetry.
• Crystals density: the mass per volume (e.g. g/cm3).
• Linear Density: the number of atoms per unit length (e.g. cm-1).
• Planar Densities: the number of atoms per unit area (e.g. cm-2).
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Chapter 3:  Structure of Metals and Ceramics

Learning Objective
– Know and utilize definitions to describe structure and
defects in various solid phases (crystal structures).

– Compute densities for close-packed structures.

– Identify Symmetry of Cells.

– Specify directions and planes for crystals and be able to
relate to characterization experiments .
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•  Non dense, random packing

•  Dense, regular packing

Dense, regular-packed structures tend to have lower energy.

ENERGY AND PACKING
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•  atoms pack in periodic, 3D arrays
•  typical of:

Crystalline materials...

-metals
-many ceramics
-some polymers

•  atoms have no periodic packing
•  occurs for:

Noncrystalline materials...

-complex structures
-rapid cooling

crystalline SiO2

noncrystalline SiO2"Amorphous" = Noncrystalline
Adapted from Fig. 3.18(b),
 Callister 6e. 

Adapted from Fig. 3.18(a),
 Callister 6e. 

From Callister 6e resource CD.

Atomic PACKING
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Crystalline Solids:  Unit Cells

Fig. 3.1 Atomic configuration in 
Face-Centered-Cubic

Arrangement

It’s geometry!

R

R R

R

a

Unit Cell: The basic structural unit of a
crystal structure. Its geometry and atomic
positions define the crystal structure.

A unit cell is the smallest component of the
crystal that reproduces the whole crystal when
stacked together with purely translational
repetition.

Note:
More than one unit cell can be chosen for a given
crystal structure but by convention/convenience
the one with the highest symmetry is chosen.

http://www.chem.ox.ac.uk/icl/heyes/structure_of_solids/Strucsol.html

 Several GIFS that follow were taken from Dr. Heyes (Oxford) excellent webpage.
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Crystalline Solids:  Unit Cells

A CRYSTAL STRUCTURE  is a periodic arrangement of atoms in the crystal
that can be described by a LATTICE + ATOM DECORATION (called a BASIS).

LATTICE 

BASIS

A  Space LATTICE  is an infinite, periodic array of mathematical points,
in which each point has identical surroundings to all others.
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Important Note:
    • Lattice points are a purely mathematical concept,

whereas atoms are physical objects.
    • So, don't mix up atoms with lattice points.
    • Lattice Points do not necessarily lie at the center of atoms.

For example, the only element exhibiting Simple Cubic structure is Po. 
In Figure (a) is the 3-D periodic arrangement of Po atoms, and
    Figure (b) is the corresponding space lattice. 
    In this case, atoms lie at the same point as the space lattice.    

Crystalline Solids:  Unit Cells
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Unit Cells and Unit Cell Vectors

av

b
v

cv

Lattice parameters
axial lengths: a, b, c
interaxial angles: α, β, γ
unit vectors:

In general: a ≠ b ≠ c
α ≠ β ≠ γ

av b
v
cv

All period unit cells may be described
via these vectors and angles.
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Possible Crystal Classes
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Possible Crystal Classes
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Unit Cells Types

Primitive Face-Centered

Body-Centered End-Centered

A unit cell is the smallest component of the crystal that reproduces the whole
crystal when stacked together with purely translational repetition.

• Primitive (P)  unit cells contain only a single lattice point.
• Internal (I)  unit cell contains an atom in the body center.
• Face (F)  unit cell contains atoms in the all faces of the  planes composing the cell.
• Centered (C)  unit cell contains atoms centered on the  sides  of the unit cell.

• Sometimes it is convenient to define a non-primitive unit cell to reveal overtly the higher symmetry.
• Then, one has to count carefully "how many atoms are in unit cell" (see next).

Combining  7 Crystal Classes  (cubic, tetragonal, orthorhombic, hexagonal, monclinic, triclinic, trigonal) 
with 4 unit cell types (P, I, F, C) symmetry allows for only 14  types of 3-D lattice. KNOW THIS!
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Unit Cells Types

• Often it’s convenient to define a non-primitive unit cell to reveal overtly the higher symmetry.
• Then, one has to count carefully "how many atoms are in unit cell" (see next).

Combining  7 Crystal Classes
    (cubic, tetragonal, orthorhombic, hexagonal, monclinic, triclinic, trigonal) 
    with 4 unit cell types (P, I, F, C) symmetry
     allows for only 14  types of 3-D lattice.

Combining these 14 Bravais lattices with all possible symmetry elements
(such as rotations, translations, mirrors, glides, etc.) yields  

230 different Space Groups!

Face-Centered

Primitive (with 1 atom/cell, no symmetry)

Cube (showing cubic symmetry w/ 4atoms/cell)
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The 14 Bravais Lattices!
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Counting Number of Atoms Per Unit Cell

Simple 2D Triangular Lattice Lattice showing primitive unit cell (in red) 
and a square, non-primitive unit cell (in green). 

Self-Assessment: Why can't the blue triangle be a unit cell? 

 Counting Lattice Points/Atoms in 2D Lattices
    • Unit cell is Primitive (1 lattice point) but contains 2 atoms in the Basis.
    • Atoms at the corner of the 2D unit cell contribute only 1/4 to unit cell count.
    • Atoms at the edge of the 2D unit cell contribute only 1/2 to unit cell count.
    • Atoms within the 2D unit cell contribute 1 as they are entirely contained inside.
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UNIT CELL - 3D Lattices
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Counting Number of Atoms Per Unit Cell

 Counting Atoms in 3D Cells
Atoms in different positions are shared by differing
numbers of unit cells.
• Vertex atom shared by 8 cells => 1/8  atom per cell.
• Edge atom shared by 4 cells => 1/4  atom per cell.
• Face atom shared by 2 cells => 1/2  atom per cell.
• Body unique to 1 cell => 1 atom per cell.

Simple Cubic
8 atoms but  shared by 8 unit cells. So,

8 atoms/8 cells  = 1 atom/unit cell

How many atoms/cell for
Body-Centered Cubic?

And, Face-Centered Cubic?
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Number of nearest-neighbor atoms

Simple cubic: coordination number, CN = 6

Coordination Number of a Given Atom
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Unit Cells and Volume Packing

Atomic configuration in 
Face-Centered-Cubic

Arrangement
What are basic structural parameters,
  e.g. lattice constant or side of cube?
How many atoms per cell?
What is volume per cell?
What is the atomic packing factor (APF)?
What is the closed-packed direction?
What are (linear) densities of less 
   close-packed directions?
What are planar densities of every plane?

It’s all geometry. 
• Need to relate cube dimension “a” to 
• Packing of ideal spherical atoms of radius “R”.

� 

2a = 4R

R
R R

R

a
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Atomic Packing Fraction for FCC

Face-Centered-Cubic
Arrangement

APF = vol. of atomic spheres in unit cell
                       total unit cell vol.

Depends on:
• Crystal structure.
• How “close” packed the atoms are.
• In simple close-packed structures with hard
sphere atoms, independent of atomic radius

Unit cell contains:
     6 x 1/2 + 8 x 1/8 
  = 4 atoms/unit cell
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a

a

2R

R22

R22
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⎠
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⎝
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Basic Geometry for FCC

� 

2a = 4R

Geometry:

4 atoms/unit cell

Coordination number = 12

Ra 22=

Geometry along close-packed direction give relation between a and R.
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Atomic Packing Fraction for FCC

Face-Centered-Cubic
ArrangementAPF = vol. of atomic spheres in unit cell

                       total unit cell vol.

How many spheres (i.e. atoms)?  
What is volume/atom?  
What is cube volume/cell?  
How is “R” related to “a”? 

4/cell
4πR3/3 

 a3

= 0.74

Independent of R!

� 

2a = 4R
Unit cell contains:
     6 x 1/2 + 8 x 1/8 
  = 4 atoms/unit cell
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Summary APF for BCC

Geometry:

2 atoms/unit cell

Coordination number = 8

a

a2

    

� 

4R ≡a 3

Again, geometry along close-packed direction give relation between a and R.

    

� 

APF = Vatoms
Vcell

=

2
4
3
π a 3

4

⎡ 
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⎢ 
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⎝ 

⎜ 
⎜ 
⎜ 

⎞ 
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⎟ 
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⎟ 

a3
= 3π

8
= 0.68

    

� 

4R ≡a 3
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ABCABC.... repeat along <111> direction gives Cubic Close-Packing (CCP)
•   Face-Centered-Cubic (FCC) is  the most efficient packing of hard-spheres of any lattice.
•   Unit cell showing the full symmetry of the FCC arrangement : a = b =c, angles all 90°
•   4 atoms in the unit cell: (0, 0, 0) (0, 1/2, 1/2) (1/2, 0, 1/2) (1/2, 1/2, 0)

Self-Assessment:  Write FCC crystal as BCT unit cell. 
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A
B

C

FCC Stacking

Highlighting the faces

Highlighting 
the stacking
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FCC Unit Cell 

Highlighting the
ABC planes and
the cube.

Highlighting the
hexagonal planes in
each ABC layer.
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 A less close-packed structure is Body-Centered-Cubic (BCC).
Besides FCC and HCP, BCC structures are widely adopted by metals.

•  Unit cell showing the full cubic symmetry of the BCC arrangement.
•  BCC: a = b = c = a  and angles α = β =γ= 90°.
•   2 atoms in the cubic cell: (0, 0, 0) and (1/2, 1/2, 1/2).
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Body-Centered-Cubic (BCC) can be template for more
Complex Structures:  Lattice with Basis Atoms

Lattice points in space decorated
with “buckeyballs” or viruses.
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ABABAB.... repeat along <111> direction gives Hexagonal Close-Packing (HCP)
•  Unit cell showing the full symmetry of the HCP arrangement is hexagonal
•  Hexagonal: a = b, c = 1.633a  and angles α = β = 90°, γ = 120°
•   2 atoms in the smallest cell: (0, 0, 0) and (2/3, 1/3, 1/2).
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A
B

HCP Stacking

Highlighting the cell
Figure 3.3

Highlighting 
the stacking

A

Layer A

Layer A

Layer B

Self-Assessment: How many atoms/cell?
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FCC HCP

Looking down (111) plane!

Looking down (0001) plane

Comparing the FCC and HCP Planes Stacking
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FCC

Packing Densities in Crystals: Lines Planes and Volumes

Linear Density:
No. of atoms along a direction vector
per  length of direction vector

Planar Density:
No. of atoms per area of plane per  area of plane

Versus

 Linear and Planar Packing Density
        which are independent of atomic radius!

Also, Theoretical Density

Concepts
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Linear Density in FCC

LD =
Number of atoms centered on a direction vector

Length of the direction vector

Example:  Calculate the linear density of an FCC crystal along [1 1 0].

ANSWER
a. 2 atoms along [1 1 0]

in the cube.
b. Length = 4R

ASK
a.  How many spheres along blue line?
b.  What is length of blue line?

    

� 

LD110 = 2atoms
4R

= 1
2R

XZ = 1i  + 1j + 0k  =  [110]

Self-assessment:  Show that LD100 = √2/4R.
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Linear Packing Density in FCC

LDP=
Number of radii along a direction vector

Length of the direction vector

Example:  Calculate the LPD of an FCC crystal along [1 1 0].

ANSWER
a. 2 atoms * 2R.
b. Length = 4R

ASK
a.  How many radii along blue line?
b.  What is length of blue line?

    

� 

LPD110 = 2 * 2R
4R

= 1

Fully CLOSE-PACKED.

Always independent of R!

Self-assessment:  Show that LPD100 = √2/2. 

MSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08

Planar Density in FCC

Ra 22=

R4

PD =
Number of atoms centered on a given plane

Area of the plane

Example: Calculate the PD on (1 1 0) plane of an FCC crystal.

• Count atoms within the plane: 2 atoms
• Find Area of Plane:  8√2 R2

    

� 

PD = 2

8 2R2
= 1

4 2R2
Hence, 
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Planar Packing Density in FCC

Ra 22=

R4

PPD =
Area of atoms centered on a given plane

Area of the plane

Example: Calculate the PPD on (1 1 0) plane of an FCC crystal.

• Find area filled by atoms in plane: 2πR2

• Find Area of Plane:  8√2 R2

    

� 

PPD = 2πR2

8 2R2
= π

4 2
= 0.555Hence, 

Always independent of R!

Self-assessment:  Show that PPD100 = π/4 = 0.785. 
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Example:  Copper
Data from Table inside front cover of Callister (see next slide):

•  crystal structure = FCC:  4 atoms/unit cell
•  atomic weight = 63.55 g/mol (1 amu = 1 g/mol)
•  atomic radius R = 0.128 nm   (1 nm = 10   cm)-7

Compare to actual: ρCu = 8.94 g/cm3

Result:  theoretical ρCu = 8.89 g/cm3

Theoretical Density, ρ
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Element
Aluminum
Argon
Barium
Beryllium
Boron
Bromine
Cadmium
Calcium
Carbon
Cesium
Chlorine
Chromium
Cobalt
Copper
Flourine
Gallium
Germanium
Gold
Helium
Hydrogen

Symbol
Al
Ar
Ba
Be
B
Br
Cd
Ca
C
Cs
Cl
Cr
Co
Cu
F
Ga
Ge
Au
He
H

At. Weight 
(amu)
26.98
39.95
137.33
9.012
10.81
79.90
112.41
40.08
12.011
132.91
35.45
52.00
58.93
63.55
19.00
69.72
72.59
196.97
4.003
1.008

Atomic radius 
(nm)
0.143
------
0.217
0.114
------
------
0.149
0.197
0.071
0.265
------
0.125
0.125
0.128
------
0.122
0.122
0.144
------
------

Density
(g/cm3)
2.71
------
3.5
1.85
2.34
------
8.65
1.55
2.25
1.87
------
7.19
8.9
8.94
------
5.90
5.32
19.32
------
------

Adapted from
Table, "Charac-
teristics of
Selected
Elements",
inside front
cover,
Callister 6e. 

Characteristics of Selected Elements at 20 C
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 Metals have...
    • close-packing 

(metallic bonds)

    • large atomic mass

  Ceramics have...
    • less dense packing 

(covalent bonds)

    • often lighter elements

  Polymers have...
    • poor packing 

(often amorphous)

    • lighter elements (C,H,O)

  Composites have...
    • intermediate values

Data from Table B1, Callister 6e.

DENSITIES OF MATERIAL CLASSES
ρmetals ≥ ρceramics ≥ ρpolymers 
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SUMMARY

• Materials come in Crystalline and Non-crystalline Solids, as
well as Liquids/Amoprhous.  Polycrystals are important.

•Crystal Structure can be defined by space lattice and basis atoms
(lattice decorations or motifs).

• Only 14 Bravais Lattices are possible.  We focus only on FCC,
HCP, and BCC, I.e., the majority in the periodic table and help
determine most CERAMIC structures.

• Crystal types themselves can be described by their atomic
positions, planes and their atomic packing (linear, planar, and
volumetric packing fraction).

• We now know how to determine structure mathematically.
   So how to we do it experimentally?  DIFFRACTION.


