Chapter 3: Structures via Diffraction

Goals

- Define basic ideas of diffraction (using x-ray, electrons, or neutrons, which, although they are particles, they can behave as waves) and show how to determine:
 - · Crystal Structure
 - Miller Index Planes and Determine the Structure
 - · Identify cell symmetry.

MaSE Illinois

MSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

1867

CRYSTALS AS BUILDING BLOCKS

- Some engineering applications require single crystals:
 - --diamond single crystals for abrasives

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.) --turbine blades
Fig. 8.30(c), Callister 6e.
(Fig. 8.30(c) courtesy

- Crystal properties reveal features of atomic structure.
 - --Ex: Certain crystal planes in quartz fracture more easily than others.

(Courtesy P M Anderson)

MSE

MSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

Chapter 3: Diffraction

Learning Objective

Know and utilize the results of diffraction pattern to get:

- lattice constant.
- allow computation of densities for close-packed structures.
- Identify Symmetry of Cells.
- Specify directions and planes for crystals and be able to relate to characterization experiments.

MSE

MSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

POLYCRYSTALS

· Most engineering materials are polycrystals.

Adapted from Fig. K, color inset pages of *Callister 6e.* (Fig. K is courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

Nb-Hf-W plate with an electron beam weld.

- · Each "grain" is a single crystal.
- If crystals are randomly oriented, overall component properties are not directional.
- Crystal sizes range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

MSE

MSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

Bravais Lattice	Constructive Interference	Destructive Interference	h, k, I are the Miller Indices of the planes of atoms that scatter! So they determine the important planes of atoms, or symmetry.
	Reflections present	Reflections absent	
BCC	(h + k + l) = Even	(h + k + l) = Odd	
FCC	(h,k,l) All Odd or All Even	(h,k,l) Not All Odd or All Even	
HCP	Any other (h,k,l)	h+2k=3n, I = Odd n= integer	atoms, or symmetry.
	Distances	between Miller In	dexed planes
For cubic crystals:		For hex	agonal crystals:
d_{hkl} :	$=\frac{a}{\sqrt{h^2+k^2+l^2}}$	$d_{hkl} =$	$\frac{a}{\sqrt{\frac{4}{3}(h^2 + hk + k^2) + l^2 \left(\frac{a}{c}\right)^2}}$

Diffraction from Mutlple Grains of Polycrystalline Aluminum

Powder diffraction figures taken from Th. Proffe and R.B. Neder (2001) http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow_a.html

MSE

MSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

SUMMARY

- Materials come in Crystalline and Non-crystalline Solids, as well as Liquids/Amoprhous. Polycrystals are important.
- •Crystal Structure can be defined by space lattice and basis atoms (lattice decorations or motifs), which can be found by diffraction.
- Only 14 Bravais Lattices are possible (e.g. FCC, HCP, and BCC).
- Crystal types themselves can be described by their atomic positions, planes and their atomic packing (linear, planar, and volumetric).
- · We now know how to determine structure mathematically and experimentally by diffraction.

MSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

