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Physics of Nanoscale MOSFETs

This lecture (and the last one) are part of the series:

“Physics of Nanoscale MOSFETs”

by Mark Lundstrom

http://www.nanoHUB.org/resources/5306

which discusses this material in more depth.
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outline

1) Review and introduction
2) Scattering theory of the MOSFET
3) Transmission under low VDS

4) Transmission under high VDS

5) Discussion
6) Summary
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IDS

VDS

the ballistic MOSFET:  IV

IDS =WCox VGS −VT( )υT
1− e−qVDS /kBT

1+ e−qVDS /kBT

⎛
⎝⎜

⎞
⎠⎟

VGS = VDD

“on-current”

ION =WCoxυT VDD −VT( )

VDS < kBT q

IDS =WCOX
υT

2kBT q
VGS −VT( )VDS

IDS = VDS RCH

VDSAT

VDSAT ≈ kBT q

VGS
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review:  ballistic I-V

  
ID =WCox VGS −VT( )%υT

1-F 1/2 ηF2( ) F 1/2 ηF1( )
1+F 0 ηF2( ) F 0 ηF1( )

⎡

⎣
⎢

⎤

⎦
⎥

  
%υT ≡

2kBT
πm*

F 1/2 ηF1( )
F 0 ηF1( ) = υT

F 1/2 ηF1( )
F 0 ηF1( )

ηF1 = EF − ε1( ) kBT ηF2 = EF − qVDS − ε1( ) kBT

 F 1/2 ηF( )→ eηF ηF << 0( )
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review:  ballistic transport in a MOSFET

L << λ

KE =
1
2

m*υ 2

ε1(x)

x

E

ε1(0)
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review:  diffusive transport in a MOSFET

L >> λ

x

x
x

x

ε1(x)

x

E

ε1(0)
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nanoscale MOSFETs

Nanoscale MOSFETs are neither fully ballistic nor fully 
diffusive; they operate in a ‘quasi-ballistic’ regime.

How do we understand how carrier scattering affects 
the performance of a nanoscale MOSFET?
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current transmission in a MOSFET

E

x
ε1(x)

I(E) T12 E( )I(E)

elastic scattering….

R11 E( )I(E) = 1− T12 (E)[ ]I E( )
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current transmission in a MOSFET

E

x
ε1(x)

I(E)

R22 E( )I(E) =

1− T21(E)[ ]I E( )

T21 E( )I(E)

elastic scattering….



11

transmisson in the presence of elastic scattering

E

x
ε1(x)

I(E)
T21 E( )I(E)

I(E) T12 E( )I(E)

T12 E( )= T21 E( )= T E( )
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inelastic scattering

E

x
ε1(x)

I(E) T12 E( )I(E)

T12 E( )≠ T21 E( )

T12 ′E( )I(E)

S. Datta, Electronic Transport in Mesoscopic Systems, 
Cambridge, 1995. 
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E(k)

k

filling states in a quasi-ballistic MOSFET

EF1

EF1-qVD

ε1(0)

E

x
ε1(x)

‘reflectionless’
contacts

some states are still filled from the drain, but the 
magnitude is reduced by back-scattering.

filled by 
injection from 

the source

Some states are now filled 
by backscattering from 
source-injected electrons.
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outline

1) Review and introduction
2) Scattering theory of the MOSFET
3) Transmission under low VDS

4) Transmission under high VDS

5) Discussion
6) Summary
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scattering theory of the MOSFET

Goal:

To illustrate the influence on scattering on the I-V 
characteristic of a MOSFET by developing a very simple 
theory.

Assumptions:

1) Average quantities, not energy-resolved.

2) Boltzmann statistics for carriers

3) T12 = T21 = T

4) Average velocity of backscattered carriers equals that 
of the injected carriers.
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scattering in a nano-MOSFET

E

x
ε1(x)

I1 TI1

RI1

T + R = 1

I1 = qnS
+ 0( )υT
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current

E

x

ε1(x)

I1 TI1

RI1

ID =W qnS
+ (0)υT − qnS

− (0)υT( )=WqnS
+ 0( )υT 1− nS

− (0) nS
+ (0)⎡⎣ ⎤⎦

nS 0( )= nS
+ 0( )+ nS

− 0( )= nS
+ 0( ) 1+ nS

− 0( ) nS
+ 0( )⎡⎣ ⎤⎦ 2( )

1( )
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current

ID =WqnS 0( )υT
1− nS

− (0) nS
+ (0)

1+ nS
− 0( ) nS

+ 0( )
⎛

⎝⎜
⎞

⎠⎟

ID =WQI 0( )υT
1− nS

− (0) nS
+ (0)

1+ nS
− 0( ) nS

+ 0( )
⎛

⎝⎜
⎞

⎠⎟

Exactly the same result we had for the ballistic case, 
but the (- velocity) carrier density at the top of the barrier 
is altered by scattering.
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E(k)

k

carrier densities at the top of the barrier

ε1(0)

E

x
ε1(x)

nS
+ 0( )= I1

qυT

nS
− 0( )= R

I1

qυT

nS
− 0( )= TnS

+ 0( )e−qVDS kBT
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from carrier densities to drain current

nS
− 0( )= RnS

+ 0( )+ TnS
+ 0( )e−qVDS kBT = nS

+ 0( ) R + 1− R( )e−qVDS kBT⎡⎣ ⎤⎦

nS
− 0( )

nS
+ 0( )

= R + 1− R( )e−qVDS kBT

ID =WQI 0( )υT
1− nS

− (0) nS
+ (0)

1+ nS
− 0( ) nS

+ 0( )
⎛

⎝⎜
⎞

⎠⎟

ID =WQI 0( )υT
1− R( )− 1− R( )e−qVDS kBT

1+ R( )+ 1− R( )e−qVDS kBT

⎛

⎝⎜
⎞

⎠⎟
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the MOSFET I-V with scattering

IDS =WCox VGS −VT( )υT
1− eqVDS /kBT

1+ eqVDS /kBT

⎛
⎝⎜

⎞
⎠⎟

(ballistic, Boltzmann statistics)

ID =WCox VGS −VT( )υT
1− R( )− 1− R( )e−qVDS kBT

1+ R( )+ 1− R( )e−qVDS kBT

⎛

⎝⎜
⎞

⎠⎟

T = 1− R( )

ID =WCox VGS −VT( )υTT
1− e−qVDS kBT

2 − T( )+ Te−qVDS kBT

⎛

⎝⎜
⎞

⎠⎟

ID scattering( )≠ TID ballistic( )
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high drain bias

ID

VDS

VGS

VDSAT ≈ kBT q

“on-current”

VGS = VDD

ID =WCox VGS −VT( )υT
1− R( )− 1− R( )e−qVDS kBT

1+ R( )+ 1− R( )e−qVDS kBT

⎛

⎝⎜
⎞

⎠⎟

ID =WCox VGS −VT( )υT
1− R( )
1+ R( )

υ 0( ) = υT
1− R( )
1+ R( )

≤ υT
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low drain bias

ID

VDSVDSAT

VGS = VDD

ID =WCox VGS −VT( )υT
1− R( )− 1− R( )e−qVDS kBT

1+ R( )+ 1− R( )e−qVDS kBT

⎛

⎝⎜
⎞

⎠⎟

GCH =
ID

VDS

=WCox VGS −VT( ) υT

2 kBT q( )
⎡

⎣
⎢

⎤

⎦
⎥ 1− R( )

GCH scattering( )= TGCH ballistic( )

RCH



24

summary of the scattering model

ID

VDS

VGS

VDSAT

VGS = VDD

  
ID ≈WCox VGS −VT( )%υT

1− R( )− 1− R( )F 1/2 ηF2( ) F 1/2 ηF1( )
1+ R( )+ 1− R( )F 0 ηF2( ) F 0 ηF1( )

⎛

⎝⎜
⎞

⎠⎟

 
GCH ≈ WCox VGS −VT( ) υT

2kBT q( )
⎛

⎝⎜
⎞

⎠⎟
F −1/2 ηF1( )
F 0 ηF1( )

⎡

⎣
⎢

⎤

⎦
⎥ 1− R( )

 
ION ≈WCox VGS −VT( )%υT

1− R( )
1+ R( )

To proceed, we need to 
understand R VGS ,VDS( )



25

outline

1) Review and introduction
2) Scattering theory of the MOSFET
3) Transmission under low VDS

4) Transmission under high VDS

5) Discussion
6) Summary
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transmission across a field-free slab

mfp = λ0

 E = 0

I1

RI1

TI1

Consider a flux of carriers injected into a field-free slab of length, L.  
The flux that emerges at x = L is T times the incident flux, where 0 < T
< 1.  The flux that emerges from x = 0 is R times the incident flux, 
where T + R = 1, assuming no carrier recombination-generation.

How is T related to the mean-free-path for backscattering within the 
slab?

x
0 L
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transmission (iii)

mfp = λ  E = 0I1 = I + (x = 0) TI1

RI1

x
0

I + (x)
I − (x) absorbing boundary

T → 0 L >> λ0

T → 1 L << λ0

T =
λ0

λ0 + L
R =

L
λ0 + L

L



28

mean-free-path

mfp = λ  E = 0I1 TI1

RI1

x

I + (x)
I − (x) absorbing boundary

T =
λ0

λ0 + L

How do we relate λ0 to known parameters?

If I1 is a thermal equilibrium injected flux,
then, it can be shown that:  

I1 = n+ (0)υT

Dn =
kBT
q

μn =
υT

2
λ0

(non-degenerate 
carrier statistics)

L0
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example

position, x

en
er

gy

ε1(x)

low VDS

T ≈
λo

L + λo

≈ 0.15

L

μn ≈ 200 cm2 /V-s

μn =
υT

2 kBT q( )λ0

λ0 ≈ 9 nm

L ≈ 50 nm

I1
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relation to conventional theory

λ0 =
2 kBT q
υT

μn

GCH = WCox VGS −VT( ) υT

2kBT q( )
⎛

⎝⎜
⎞

⎠⎟
1− R( )

(non-degenerate carrier statistics)

GCH =
W
L
μnCox VGS −VT( )

The scattering model works in 
the diffusive limit, as well as 
the ballistic limit, and in the 
quasi-ballistic regime in 
between. 

1− R = T =
λ0

λ0 + L
≈
λ0

L (diffusive limit)
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channel conductance

T =
λ0

λ0 + L

GCH =
W
L

1
μn

+
1
μB

⎛
⎝⎜

⎞
⎠⎟

−1

Cox VGS −VT( )

GCH = T WCox VGS −VT( ) υT

2kBT q( )
⎛

⎝⎜
⎞

⎠⎟

one can show that:

μn =
υTλ0

2 kBT q

μB =
υT L

2 kBT q



32

outline

1) Review and introduction
2) Scattering theory of the MOSFET
3) Transmission under low VDS

4) Transmission under high VDS

5) Discussion
6) Summary
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transmission under high drain bias

 
ION =WCox VGS −VT( )%υT

1− R( )
1+ R( )

=WCox VGS −VT( )%υT
T

2 − T( )

scattering model:

in practice:

B ≡
ION measured( )
ION ballistic( )

≈ 0.50

B =
T

2 − T( )
→ T ≈ 0.67 >> 0.15 Why?
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transmission across a slab with an electric field

mfp = λ0

 E >> 0

I1

RI1

TI1

When the electric field is strong and position-dependent and several 
scattering mechanisms operate, this turns out to be a difficult problem.

How can we understand the essential physics?

x
0 L
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transport “downhill”

Peter J, Price, “Monte Carlo calculation of 
electron transport in solids,”
Semiconductors and Semimetals, 14, pp. 
249-334, 1979

‘critical layer’

T =
λo

l + λo

EC (x)
T ≈ 1:
High field regions are 
good carrier collectors.

I1

TI1

L

<< L
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transport in a MOS transistor

 
T ≈

λo

l + λo

TI1

x

high VDS 

  ε1(x)

I1

E

1) A MOSFET consists of a low-field 
region near the source that is 
strongly controlled by the gate 
voltage, and a high-field region 
near the drain that is strongly 
controlled by the drain voltage.

2) Transmission is controlled by the 
low-field region near the source.

3) Scattering near the drain has a 
smaller effect on backscattering  to 
the source.

RI1
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bias-dependent transmission

ε1(x)

low VDS

T ≈
λo

L + λo

≈ 0.15

L

I1

 
T ≈

λo

l + λo

≈ 0.67

x

E
high VDS

 ε1(x)

I1

x

E
<< L
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outline

1) Review and introduction
2) Scattering theory of the MOSFET
3) Transmission under low VDS

4) Transmission under high VDS

5) Discussion
6) Summary
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relation to conventional theory (high VDS)

TI1

x

high VDS 

  ε1(x)

I1

E

T =
λo

l + λo

≈
λo

l λo << l( )

ID = WCox
T

2 − T
υT VGS −VT( )

ID ≈WCox
T
2
υT VGS −VT( )

ID ≈WCox
λ0

2l
υT VGS −VT( )

ID ≈WCox
Dn

l
VGS −VT( )How do we physically 

interpret this result? 
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drift-diffusion picture

ID =WCox
Dn

l
VGS −VT( )

ε1 x( )

x

E

The top of the barrier is a bottleneck that 
carriers must diffuse across.
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drift-diffusion vs. scattering model

ID =WCox
T

2 −T
υT VGS −VT( )

 
ID =WCox

1
υT

+
1

Dn l( )
⎡

⎣
⎢

⎤

⎦
⎥

−1

VGS −VT( ) drift-diffusion

Dn =

scattering

υTλ0 2 T =
λ0

λ0 + l
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outline

1) Review and introduction
2) Scattering theory of the MOSFET
3) Transmission under low VDS

4) Transmission under high VDS

5) Discussion
6) Summary
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summary

1) Modern MOSFETs operate between the ballistic 
and diffusive limits, so we need to understand 
transport in the quasi-ballistic regime.

2) Transmission (or scattering) theory provides a 
simple, physical description of quasi-ballistic 
transport.

3) The same physics can also be understood at the 
drift-diffusion level.

4) Quantitative treatments require detailed numerical 
simulation.
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Questions & Answers
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