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plan for the lecture series

1) Percolative transport in electronic devices

2) Basic concepts: threshold, island sizes, fractal dimensions

3) Electrical conduction in random media

4) Theory of stick percolation: application to nanonet transistors

5) 2D nets in 3D world: sensors, solar cells, super-capacitors

Acknowledgement:
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outline of lecture 1

1) Order is an anomaly … randomness rules

1) Randomness in electronics 

2) Randomness in nature

2) Why did we not hear about it

1) Averaging over large numbers

2) Quantization and coherence 

3) Approximate randomness at your own peril 

1) Weibull distribution vs. Gaussian distribution.

2) Poisson vs. ‘Fish’ arrival distributions 

4) Conclusions
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randomness in electronics …

1947 …. 
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random dopant fluctuation
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100 nm  --- 1000 dopants
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side view

top view model
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Flash     vs.        Nanocrystal Flash

Anomalous
leakage

Top viewmodel

1 to 0
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solar cells and display electronics

Key issues:

Transport through barriers
created by grain boundaries

Device/device fluctuation
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Flexible nanonet electronics

Model ? Stick percolationHeterogeneous percolation

source

Dra
in

Cao, Nature, 2008
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solar cells

side view Band-diagram

Exciton recombination before dissociation 
at the junction makes it a poor cell …
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nano-structured solar cells

How do we describe exciton dissociation/charge collection 

heterogeneous 
percolation

mixed layers
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An array …
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diffusion towards disordered biosensors…

Key issues:

density dependent response time
conductivity, transfer resistance
or substrate dependence

Channel length scaling 
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Organic substrate
After expansion

sensor

chemical sensors and e-nose
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randomness is the rule, not the exception ….
In plane transport
epidemics, forest fire,
telecom grid, www, 
Nanonets, RDF

Out of plane transport:
Aerosol, paper, sensors

Cluster sizes
Oil fields, NC Flash



16

outline of lecture 1

1) Order is an anomaly … randomness is the rule

2) Why did we not hear about it

3) Approximate randomness at your own peril 

4) Conclusions
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Given traces of impurity, change in property (e.g. 
transmission) is easily predicted. 

Fluctuation in properties of large system is small. 

1 mm3 ~ 1017 molecules

T

impurities

correct theory

approximate theory

Why did I not hear about it (1) ?
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Some small systems have
unusually robust properties, 
(e.g., quantum Hall effect)
and physicists often focus 
on those extra-ordinary 
aspects of small systems …

why did I not hear about it (2) ? 

Small regular systems
Bio-mimetic materials
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mean and deviation
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…. wrong on both counts and computer alone can not help 



20

top effective media approach ….

G

p

p=0.5 p=0.8p=0.3

… that’s what textbooks say!
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basics of percolation: averaging matters

p=0.3 p=0.5 p=0.8

G

ppC

Consequences of adding a 
new disk depends on
existing configuration ... 
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… and so does the fluctuation
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May look the same, but have very different implications

p=0.8 p=0.8
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current approach: transistor design

Is Gaussian distribution appropriate ?!! 

I
ppC
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current approach: thermal conduction

A. Majumdar, Nature, 2007
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outline of lecture 1

1) Order is an anomaly … randomness is the rule

2) Why did we not hear about it

3) Approximate randomness at your own peril 

4) Conclusions



26

time

G
at

e 
C

ur
re

nt
Breakdown

I

p(t)pC

oxide degradation and breakdown



27

NM

If the bottom up view is correct, then we will have a 
straight-line in a Weibull plot and slope proportional to thickness

(simple) theory of breakdown

0 (1 )NP p= − (1 ) exp( )NNp N Np= − = −

( )0
Mt t α=

0 exp1 ( ) ( )P NpF p = = −−

0ln( ln( )) ln( ) ln( ) ln( )1W tF MM t Nαα≡ − = − +−

Mp q=

( )0q t t α=
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Thin oxide breaks much faster than thick oxide due to percolation,
process-improvement can not solve this problem

Measurement
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very different lifetime projection …

1 CPU ~ 109 Transistors
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Data
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Logn

When one fails, so does the 
whole. Mean is not enough ….

Statistical distributions are physical ….

http://www.computerhistory.org/timeline/?category=cmpnt
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example 2: arrival time distribution

Find the arrival time distribution at the waterfall.

1D model for ….. 

field-return of components 
charge loss in Nanocrystal Flash
release of proteins from inside the cells, etc.
Drug release from capsules, etc. 

waterfall

Mountain Fishes dropped at x0 at t=0



31

approximated by classical distributions
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derivation of “Fishy” (or BFRW) distribution
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long tail of a distribution
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aside: averageless distribution
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… bottom line is that computer simulation alone would not do  
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so percolation theory is indeed necessary …
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… but classical percolation is not enough

Large system in thermodynamic limit

Not explicitly concerned with fluctuation

Disk percolation as a central paradigm

Linear response theory 

Heterogeneous percolation is seldom used

Transport on plane or a volume

Primary interest in steady state systems

See you in lecture 2  then!
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