NCN@Purdue-Intel Summer School Notes on Percolation Theory

Lecture 1 Percolation in Electronic Devices

Muhammad A. Alam
Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA

plan for the lecture series

- 1) Percolative transport in electronic devices
- 2) Basic concepts: threshold, island sizes, fractal dimensions
- 3) Electrical conduction in random media
- 4) Theory of stick percolation: application to nanonet transistors
- 5) 2D nets in 3D world: sensors, solar cells, super-capacitors

Acknowledgement:

D. Varghese, P. Nair, and E. Islam

outline of lecture 1

- 1) Order is an anomaly ... randomness rules
 - 1) Randomness in electronics
 - 2) Randomness in nature
- 2) Why did we not hear about it
 - 1) Averaging over large numbers
 - 2) Quantization and coherence
- 3) Approximate randomness at your own peril
 - 1) Weibull distribution vs. Gaussian distribution.
 - 2) Poisson vs. 'Fish' arrival distributions
- 4) Conclusions

randomness in electronics ...

super-capacitors

random dopant fluctuation

side view

@1e18/cm³ 100 nm --- 1000 dopants 20 nm --- 40 dopants 10 nm --- 10 dopants

Flash vs. Nanocrystal Flash

solar cells and display electronics

Key issues:

Transport through barriers created by grain boundaries

Device/device fluctuation

Flexible nanonet electronics

Cao, Nature, 2008

Heterogeneous percolation

solar cells

Exciton recombination before dissociation at the junction makes it a poor cell ...

nano-structured solar cells

How do we describe exciton dissociation/charge collection

super-capacitors

capacitor

Electrolyte capacitor

Super-capacitor

biosensors ...

diffusion towards disordered biosensors...

Key issues:

- density dependent response time
- conductivity, transfer resistance or substrate dependence
- □ Channel length scaling

chemical sensors and e-nose

randomness is the rule, not the exception

Cluster sizes
Oil fields, NC Flash

In plane transport epidemics, forest fire, telecom grid, www, Nanonets, RDF

Aerosol, paper, sensors

outline of lecture 1

- 1) Order is an anomaly ... randomness is the rule
- 2) Why did we not hear about it
- 3) Approximate randomness at your own peril
- 4) Conclusions

Why did I not hear about it (1)?

 $1 \text{ mm}^3 \sim 10^{17} \text{ molecules}$

Given traces of impurity, change in property (e.g. transmission) is easily predicted.

Fluctuation in properties of large system is small.

why did I not hear about it (2)?

Some small systems have unusually robust properties, (e.g., quantum Hall effect) and physicists often focus on those extra-ordinary aspects of small systems ...

- Small regular systems
- Bio-mimetic materials

mean and deviation

.... wrong on both counts and computer alone can not help

 p_{C}

top effective media approach

basics of percolation: averaging matters

Consequences of adding a new disk depends on existing configuration ...

... and so does the fluctuation

May look the same, but have very different implications

current approach: transistor design

Is Gaussian distribution appropriate?!!

current approach: thermal conduction

A. Majumdar, Nature, 2007

outline of lecture 1

- 1) Order is an anomaly ... randomness is the rule
- 2) Why did we not hear about it
- 3) Approximate randomness at your own peril
- 4) Conclusions

oxide degradation and breakdown

(simple) theory of breakdown

$$P_0 = (1-p)^N = (1-Np/N)^N = \exp(-Np)$$

$$1 - F(p) = P_0 = \exp(-Np)$$

$$W \equiv \ln(-\ln(1-F)) = M\alpha \ln(t) - M\alpha \ln(t_0) + \ln(N)$$

If the bottom up view is correct, then we will have a straight-line in a Weibull plot and slope proportional to thickness

bottom-up prediction for oxide scaling

Measurement

Thin oxide breaks much faster than thick oxide due to percolation, process-improvement can not solve this problem

very different lifetime projection ...

1 CPU ~ 109 Transistors

When one fails, so does the whole. Mean is not enough

Statistical distributions are physical

example 2: arrival time distribution

Find the arrival time distribution at the waterfall.

1D model for
☐ field-return of components
☐ charge loss in Nanocrystal Flash
☐ release of proteins from inside the cells, etc.
☐ Drug release from capsules, etc.

approximated by classical distributions

$$f_G(t) = \frac{t^{k-1}e^{-t/\theta}}{\Gamma(k)\theta^k}$$
 $T_{avg} = k\theta$

derivation of "Fishy" (or BFRW) distribution

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2} \qquad P(x, t = 0) = \delta(x - x_0)$$

$$P(x = 0, t) = 0$$

$$P(x,t) = (4\pi Dt)^{-1/2} \left[e^{-(x-x_0)^2/4Dt} - e^{-(x+x_0)^2/4Dt} \right]$$

$$\int_{0}^{t} f(\tau)d\tau + \int_{0}^{L} P(x,t)dx = 1 \implies f(t) = \frac{x_{0}}{\sqrt{4\pi Dt^{3}}} e^{-x_{0}^{2}/4Dt}$$

long tail of a distribution

$$T_{avg} = \int_{0}^{\infty} t f(t) dt = \int_{0}^{\infty} \frac{x_{0}t}{\sqrt{4\pi Dt^{3}}} e^{-x_{0}^{2}/4Dt} dt \rightarrow \infty$$

$$10^{6}$$

$$10^{5}$$

$$10^{3}$$

$$10^{3}$$

$$10^{3}$$

$$10^{3}$$
Sample Number

Exact solution

Exact solution

Exact solution

Exact solution

aside: averageless distribution

... bottom line is that computer simulation alone would not do

so percolation theory is indeed necessary ...

... but classical percolation is not enough

- □ Large system in thermodynamic limit
 - Not explicitly concerned with fluctuation
- □ Disk percolation as a central paradigm
- □ Linear response theory
- □ Heterogeneous percolation is seldom used
- □ Transport on plane or a volume
- □ Primary interest in steady state systems

See you in lecture 2 then!