NCN@Purdue-Intel Summer School Notes on Percolation Theory

Lecture 2 Thresholds, Islands, and Fractals

Muhammad A. Alam

Electrical and Computer Engineering
Purdue University
West Lafayette, IN USA

Outline of lecture 2

- 1) Basic concepts of percolation theory
- 2) Percolation threshold and 'excluded volume'
- 3) Cluster size distribution, cluster Radius
- 4) Fractal dimension of a random surface
- 5) Conclusion

Application Notes: Nanocrystal Flash

Three topics of random systems

Cluster sizes
Oil fields, NC Flash

Percolation threshold

epidemics, forest fire, telecom grid, www Nanonets, photovoltaics

Fractal dimension Aerosol, paper, sensors

basic concepts: percolation threshold

basic concepts: cluster size

cluster-size distribution and its moments

 $n_s(p,L)$

Number of cluster of size s divided by the number of sites

$$p = \sum_{0 < s < \infty} sn_s(p)$$

$$s_{avg} = \frac{\sum_{s>0} s^2 n_s(p)}{\sum_{s>0} s n_s(p)}$$

...plays a role similar to Boltzmann distribution f(E)

average cluster vs. infinite cluster

$$s_{avg} = \frac{\sum_{s>0} s^2 n_s(p)}{\sum_{s>0} s n_s(p)}$$

basic concepts: dimension of a surface

outline

- 1) Basic Concepts of Percolation Theory
- 2) Percolation Threshold and Excluded Volume
- 3) Cluster Size Distribution, Cluster Radius
- 4) Fractal dimension of a random structure
- 5) Conclusion

Application Notes: Nanocrystal Flash

calculation of percolation threshold

 $p_c = 0.593$

$$p_c = 0.500$$

Hexagonal

$$p_c = 0.697$$

Percolation threshold ($p_c=N_c/N_T$) depends on lattice, there is something wrong here!

area fraction fill-factor $F \equiv A_{element}/A_{cell}$

Square

$$F = \frac{\pi}{4}$$

Triangular

$$F = \frac{\pi}{2\sqrt{3}}$$

Hexagonal

$$F = \frac{\pi}{3\sqrt{3}}$$

$(F \times p_c)$ is universal

Square

Triangular

$$p_c = 0.593$$

$$F = \frac{\pi}{4}$$

$$Fp_{c} \sim 0.45$$

$$p_c = 0.500$$

$$F = \frac{\pi}{2\sqrt{3}}$$

$$Fp_{c} \sim 0.45$$

$$p_c = 0.697$$

$$F = \frac{\pi}{3\sqrt{3}}$$

$$Fp_{c} \sim 0.42$$

HW: Percolation in 3D lattices

For simple cubic lattice site percolation, $Fp_c \sim 0.16$ and $p_c \sim 0.311$. Here F is the volume fill fraction, not area fill fraction.

Use the universality of ${\sf Fp}_{\sf c}$ to show that the percolation threshold for FCC lattice must be approximately 0.1

percolation involving other shapes

How do I determine the percolation threshold?

 $Fxp_c \sim 0.45$ will not work, unfortunately!

excluded area ... first an intuitive result

the concept of excluded area

For disks on arbitrary grid ...

$$F \times p_c = \frac{A_{element}}{A_{cell}} \cdot \frac{N_C}{N_T} \approx 0.45$$

$$A_{element} = \frac{\pi}{4} (D)^2$$

For arbitrary shape on arbitrary grid ...

$$\frac{A_{ex}}{A_{cell}} \cdot \frac{N_C}{N_T} \approx 1$$

Percolation begins when excluded volume is routinely breached

excluded volume for a stick

$$A_{\theta_i,\theta_j} = L_S L_S \sin(\theta_i - \theta_j)$$

$$A_{ex} = \int_{-\pi/2}^{\pi/2} d\theta_i \mathbf{P}(\theta_i) \int_{-\pi/2}^{\pi/2} d\theta_j \mathbf{P}(\theta_j) \times A_{\theta_i, \theta_j}$$
$$= \frac{2}{\pi} L_S^2$$

excluded volume for a stick

$$\frac{A_{ex}}{A_{cell}} \bullet \frac{N_C}{N_T} \approx 1.8$$

$$A_{ex}N_C = 1.8$$

$$\frac{2L_S^2}{\pi} \frac{N_C}{A_{cell}N_T} \approx 1.8$$

$$N_C \approx \frac{0.9\pi}{L_S^2} \text{ area}^{-1}$$

percolation threshold correct within a factor of 2!

HW: excluded volume for other shapes ...

curved stick ...

Ans.
$$A_{ex} = \frac{2}{\pi} L_{chord}^2$$

$$(if L_{chord} < \frac{R}{2})$$

Hint. Use the stick algorithm

$$A_{ex} = 2L^2 (1 + 2/\pi + 4/\pi^2)$$

Hint. Compare with circle

For general shape, use the Monte Carlo code posted

outline

- 1) Basic Concepts of Percolation Theory
- 2) Percolation Threshold and Excluded Volume
- 3) Cluster Size Distribution, Cluster Radius
- 4) Fractal dimension of a random structure
- 5) Conclusion

Application Notes: Nanocrystal Flash

cluster-size distribution

small-cluster size distribution

$$n_1(p) = 1 \times p \times (1-p)^4$$

$$n_2(p) = 2 \times p^2 \times (1-p)^6$$

features of cluster-size distribution

$$n_1 = 1 \times p \times (1 - p)^4$$

$$n_2 = 2 \times p^2 \times (1 - p)^6$$

$$n_3 = 2 \times p^3 \times (1-p)^8$$

$$+4 \times p^3 \times (1-p)^7$$

- o 'Zeros' at p=0,1 with single peak
- O Peak shifts towards p_c with s (e.g. s=1 is 0.2, s=2 is 0.25; s=3 is 0.29)
- General form: $n_s(p) = \sum_t g_{st} \times p^s \times (1-p)^t$ • g_{st} increases exponentially.

numerical plots for cluster-size distribution

scaling of cluster sizes

for reasonably large cluster-sizes (s>20)

$$n_s(p) \approx e^{-c\left[(p-p_c)s^{\sigma}+0.45\right]^{\alpha}} n_s(p_c)$$

self-similarity and scale-invariance

self-similarity

irregular self-similarity

regular self-similarity

outline

- 1) Basic Concepts of Percolation Theory
- 2) Percolation Threshold and Excluded Volume
- 3) Cluster Size Distribution, Cluster Radius
- 4) Fractal dimension of a random structure
- 5) Conclusion

Application Notes: Nanocrystal Flash

classification of surfaces...

Fractal Dimension (D_F)- Box counting technique

 $N(h) \sim h^{1}$

$$N(h) \sim h^0$$

dimension of Cantor dust

1/3

h 1/9 N 4

h 1/27

h 1/3ⁿ N 2ⁿ

$$D_{F,1} = \frac{\log(N)}{\log(1/h)} = \frac{\log(2^n)}{\log(3^n)} = 0.63$$
 Bigger than point, but smaller than li

but smaller than line

In general,
$$D_{F,1} = \frac{\log(m)}{\log(n)}$$
 keep m piece of n pieces

regular and irregular fractals

$$D_{F,1} = \frac{\log(m)}{\log(n)} \quad \dots \text{ keep m piece}$$
of n pieces

dimension of quasi-2D cantor stripes

$$D_{F,2} = \frac{\log(N)}{\log(1/h)} = \frac{\log(3^n) + \log(2^n)}{\log(3^n)} = 1 + \frac{\log(2^n)}{\log(3^n)} = 1 + DF_x$$

In general,
$$D_{F,3} = DF_x + DF_y + DF_z$$

same DF, but different geometry

same dimension, because DF=log(m)/log(n)

What about this irregular fractal?

dimension of a irregular fractal

cantor transform

Preserve D_F during transformation

fractal dimension at percolation

self-similarity

Summary

- □ Discussed three key concepts of percolative transport: percolation threshold, island size distribution, and fractal dimension
- ☐ The concept of excluded volume provides a (nearly) geometry independent way for calculating the percolation threshold for arbitrarily shaped objects on arbitrary grid.
- □ Distribution of island sizes is also described by simple formula with universal constants. At percolation threshold, the island sizes are self-similar and scale invariant.
- □ Fractal dimension provides a generalized technique to describe the dimension of any surfaces, even those defined by randomly oriented sticks.