Purdue MSE597G Modeling and Simulations of Materials R. Edwin Garcia and Alejandro Strachan

Lectures on Molecular Dynamics simulations of materials

Alejandro Strachan

School of Materials Engineering and Birck Nanotechnology Center
Purdue University

strachan @purdue.edu

Molecular Dynamics simulations

Introduction

- •What is molecular dynamics (MD)? Examples of current research
- •Why molecular dynamics?

Part 1: the theory behind molecular dynamics

- •Basic ideas & algorithms
- •Brief introduction to the physics necessary to run & understand MD

Part 2: total energy and force calculations

- •Quantum mechanical origin of atomic interactions
- •Inter-atomic potentials: "averaging electrons out"

Part 3: advanced techniques, mesodynamics, verification and validation

- •MD in under isothermal and isobaric conditions
- •Coarse grain approaches and dynamics with implicit degrees of freedom
- •Before you perform production runs
- •Tutorial to perform MD simulations using the nanoMATERIALS simulation tool at the nanoHUB
- Homework exercises

What is molecular dynamics?

Follow the dynamics (motion) of all the atoms in your material

Numerically solve classical equations of motion (Newton's):

Forces on atoms come from the total potential energy:

Materials modeling and MD

MD examples: molecular mechanisms the govern mechanical response

Response of HMX [cyclic (CH₂-N-NO₂)₄] to dynamical loading *

Shock along [001] with piston velocity 0.75 km/s

MD examples: molecular mechanisms the govern mechanical response

Response of HMX [cyclic (CH₂-N-NO₂)₄] to dynamical loading *

Shock along [001] with piston velocity 0.5 km/s

Shock along [001] with piston velocity 0.75 km/s

MD examples: molecular mechanisms the govern mechanical response

Response of HMX [cyclic (CH₂-N-NO₂)₄] to dynamical loading *

Shock along [001] with piston velocity 0.5 km/s

Shock along [001] with piston velocity 0.75 km/s

MD examples: nanoscale materials & phenomena

•Prediction of atomic level structure, energetics and mechanical properties of Si nanotubes

Palaria, Klimeck, and Strachan.

•Size dependency of thermal transport in nano-heterostructures

Zhou, Anglin and Strachan, J. Chem. Phys. (2007)

•Coherency limit and relaxation mechanisms in hetero-epitaxial nanowires

Park and Strachan

Arumbakkam, Davidson, and Strachan, Nanotechnology (2007)

MD examples: nanoscale materials & phenomena

•Prediction of atomic level structure, energetics and mechanical properties of Si nanotubes

Palaria, Klimeck, and Strachan.

•Size dependency of thermal transport in nano-heterostructures

Zhou, Anglin and Strachan, J. Chem. Phys. (2007)

•Coherency limit and relaxation mechanisms in hetero-epitaxial nanowires

Park and Strachan

Arumbakkam, Davidson, and Strachan, Nanotechnology (2007)

MD examples: chemistry in condensed matter

Why molecular dynamics?

Materials Selection in Mechanical Design (3rd edition) by MF Ashby, Butterworth Heinemann, 2005

- •Difference in bonding alone can not explain the enormous range in observed values for materials properties
- •Atomic structure and microstructure (defects, interfaces, etc.) play a key role