Purdue MSE597G Lectures on Molecular Dynamics simulations of materials

Lecture 2 Statistical Mechanics I

Alejandro Strachan

School of Materials Engineering and Birck Nanotechnology Center Purdue University

strachan@purdue.edu

Molecular Dynamics simulations

Introduction

- •What is molecular dynamics (MD)? Examples of current research
- •Why molecular dynamics?

Part 1: the theory behind molecular dynamics

- •Basic ideas & algorithms
- •Brief introduction to the physics necessary to run & understand MD

Part 2: total energy and force calculations

- •Quantum mechanical origin of atomic interactions
- •Inter-atomic potentials: "averaging electrons out"

Part 3: advanced techniques, mesodynamics, verification and validation

- •MD in under isothermal and isobaric conditions
- •Coarse grain approaches and dynamics with implicit degrees of freedom
- •Before you perform production runs
- •Tutorial to perform MD simulations using the nanoMATERIALS simulation tool at the nanoHUB
- Homework exercises

Analysis/interpretation of MD: statistical mechanics

Relate microscopic phenomena and macroscopic properties

- •Given a thermodynamic state of a material, what are the probabilities of finding the system in the various possible microscopic states?
- •Given a series of microscopic states, what is the corresponding macroscopic state?

Consider N atoms in a rigid container of volume V with constant energy E

What is the probability of finding the state in a given microscopic state:

A simple case: 1-D harmonic oscillator:

Consider N atoms in a rigid container of volume V with constant energy E

Number of different possible microscopic states:

Postulate: the probability of the material being in any one of the $\Omega(N,V,E)$ is the same, i.e. all states are equally likely

Energy can be exchanges between subsystems 1 and 2

•What is the probability of subsystem 1 having energy E₁?

$$P(E_1, E - E_1) = \frac{\text{Number of microstates with E}_1}{\Omega(E, V, N)}$$

Additive measure of number of states:

$$\log P(E_1, E - E_1) = \log \Omega_1(E_1, V_1, N_1) + \log \Omega_2(E - E_1, V - V_1, N - N_1) + C$$

Equilibrium state of the material:

Subsystems have the most likely energies: maximum of $log P(E_1, E-E_2)$

$$\frac{\partial \log P(E_1, E - E_1)}{\partial E_1} = 0 = \frac{\partial \log \Omega_1(E_1, V_1, N_1)}{\partial E_1} + \frac{\partial \log \Omega_2(E - E_1, V - V_1, N - N_1)}{\partial E_1}$$

Stat Mech: microcanonical ensemble

 $log\Omega$ is important enough to have its own name: entropy

$$S = k \log \Omega(E, V, N)$$

Temperature:

$$\frac{\partial S(E,V,N)}{\partial E} = \frac{1}{T}$$

$$\frac{\partial S(E,V,N)}{\partial E} = \frac{1}{T} \qquad \frac{\partial \Omega(E,V,N)}{\partial E} = \beta = \frac{1}{kT}$$

Pressure:

$$\frac{\partial S(E,V,N)}{\partial V} = -\frac{P}{T}$$

Chemical potential:

$$\frac{\partial S(E,V,N)}{\partial N} = \frac{\mu}{T}$$

Stat Mech: canonical ensemble

$$E+E_{\text{bath}}=E_{\text{tot}}=\text{Constant}$$

 $E+E_{\text{bath}}=E_{\text{tot}}=\text{Constant}$ Bath Probability of system being in a **microscopic** $(\{r_i\},\{p_i\})$ state with energy E:

$$P(\lbrace r_i \rbrace, \lbrace p_i \rbrace) = \frac{\Omega_{bath}(E_{tot} - H(\lbrace r_i \rbrace, \lbrace p_i \rbrace))}{\Omega_{total}}$$

Since $E << E_{tot}$ we expand $log \Omega_{bath}$ around E_{tot} :

Canonical ensemble and thermodynamics

Maxwell-Boltzmann distribution
$$P(\lbrace r_i \rbrace, \lbrace p_i \rbrace) = \frac{e^{-\beta H(\lbrace r_i \rbrace, \lbrace p_i \rbrace)}}{\sum_{microstates} e^{-\beta H(\lbrace r_i \rbrace, \lbrace p_i \rbrace)}}$$

Partition function:
$$Z(N,V,T) = \sum_{microstates} e^{-\beta H(\{r_i\},\{p_i\})}$$

$$Z(N,V,T) = \sum_{E} \Omega(N,V,E) e^{-\frac{E}{kT}} = \Omega(N,V,\overline{E}) e^{-\frac{\overline{E}}{kT}}$$

$$\log Z(N,V,T) = \log \Omega(N,V,E) - \frac{E}{kT}$$

Helmholtz free energy:

$$F = E - TS = -kT \log Z(N, V, T)$$

Canonical ensemble: averages

Consider a quantity that depends on the atomic positions and momenta:

$$A(\lbrace r_i \rbrace, \lbrace p_i \rbrace)$$

In equilibrium the average values of A is:

$$\langle A \rangle = \sum_{microstates} A P_{micro} = \frac{\sum_{microstates} A(\{r_i\}, \{p_i\}) e^{-\beta H(\{r_i\}, \{p_i\})}}{\sum_{microstates} e^{-\beta H(\{r_i\}, \{p_i\})}}$$
Ensemble average

When you measure the quantity A in an experiment or MD simulation:

$$\frac{1}{\tau} \int_{0}^{\tau} dt A(\lbrace r_{i}(t)\rbrace, \lbrace p_{i}(t)\rbrace)$$
 Time average

Under equilibrium conditions temporal and ensemble averages are equal

Canonical ens.: equipartition of energy

Consider a variable that appears squared in the Hamiltonian:

$$H(\lbrace r_i \rbrace, \lbrace p_i \rbrace) = \lambda p_1^2 + V(\lbrace r_i(t) \rbrace) + \sum_{i=2}^{3N} \frac{p_i(t)^2}{2m_i} = \lambda p_1^2 + H'$$

$$\left\langle \lambda p_{1}^{2} \right\rangle = \frac{\int d^{3N} p \, d^{3N} p \, \lambda p_{1}^{2} e^{-\frac{H(\left\{r_{i}\right\}, \left\{p_{i}\right\})}{kT}}}{\int d^{3N} p \, d^{3N} p \, e^{-\frac{H(\left\{r_{i}\right\}, \left\{p_{i}\right\})}{kT}}} = \frac{\int d^{3N} p \, d^{3N-1} p \, e^{-\frac{H'}{kT}} \int dp_{1} \lambda p_{1}^{2} e^{-\frac{\lambda p_{1}^{2}}{kT}}}{\int dp_{1} \lambda p_{1}^{2} e^{-\frac{\lambda p_{1}^{2}}{kT}}}$$

Change of variable:
$$\frac{\lambda p_1^2}{kT} = x^2$$
 $dp_1 = \frac{kT}{\lambda} dx$

$$\left\langle \lambda p_1^2 \right\rangle = \frac{\frac{(kT)^2}{\lambda} \int dx \ x^2 \ e^{-x^2}}{\frac{kT}{\lambda} \int dx \ e^{-x^2}} = \frac{1}{2} kT$$

Equipartition of energy: Any degree of freedom that appears squared in the Hamiltonian contributes 1/2kT of energy