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Molecular Dynamics simulations
Introduction

•What is molecular dynamics (MD)? Examples of current research
•Why molecular dynamics?

Part 1: the theory behind molecular dynamics
•Basic ideas & algorithms
•Brief introduction to the physics necessary to run & understand MD

Part 2: total energy and force calculations
•Quantum mechanical origin of atomic interactions
•Inter-atomic potentials: “averaging electrons out”

Part 3: advanced techniques, mesodynamics, verification and validation
•MD in under isothermal and isobaric conditions
•Coarse grain approaches and dynamics with implicit degrees of freedom
•Before you perform production runs

•Tutorial to perform MD simulations using the nanoMATERIALS simulation 
tool at the nanoHUB
•Homework exercises



Analysis/interpretation of MD: statistical mechanics

Relate microscopic phenomena and macroscopic properties
•Given a thermodynamic state of a material, what are the probabilities 
of finding the system in the various possible microscopic states?
•Given a series of microscopic states, what is the corresponding 
macroscopic state?




Statistical mechanics
N,V,E

What is the probability of finding the state in a given microscopic 
state:

Consider N atoms in a rigid container of 
volume V with constant energy E

A simple case: 1-D harmonic oscillator:
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Statistical mechanics
N,V,E

Number of different possible microscopic states:

Consider N atoms in a rigid container of 
volume V with constant energy E

Postulate: the probability of the material being in any one of the 
Ω(N,V,E) is the same, i.e. all states are equally likely 



Statistical mechanics

E1

Consider a fictitious separation that divides 
the material in two subsystems E2=E-E1

Energy can be exchanges between subsystems 1 and 2
•What is the probability of subsystem 1 having energy E1?

( ) =− 11, EEEP Number of microstates with E1

( )NVE ,,Ω

Additive measure of number of states:
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Statistical mechanics

Equilibrium state of the material: 
Subsystems have the most likely energies: maximum of logP(E1,E-E2)
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Stat Mech: microcanonical ensemble

Ludwig Boltzmann (1844-1906)
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logΩ is important enough to have its own name: entropy
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Stat Mech: canonical ensemble

E+Ebath=Etot=Constant
Sys

Bath Probability of system being in a microscopic
({ri},{pi}) state with energy E:

{ } { }( ) { } { }( )( )
total

iitotbath
ii

prHEprP
Ω
−Ω

=
,,

Since E<<Etot we expand logΩbath around Εtot:



Canonical ensemble and thermodynamics

Maxwell-Boltzmann distribution

Partition function: ( ) { } { }( )∑ −=
smicrostate

prH iieTVNZ ,,, β

( ) ( )∑
−

Ω=
E

kT
E

eEVNTVNZ ,,,,

E

kT
E

e
−

( )EVN ,,Ω

( ) kT
E

eEVN
−

Ω= ,,

( ) ( )
kT
EEVNTVNZ −Ω= ,,log,,log

( )TVNZkTTSEF ,,log−=−=

Helmholtz free energy:

{ } { }( )
{ } { }( )

{ } { }( )∑ −

−

=

smicrostate

prH

prH

ii ii

ii

e
eprP ,

,

, β

β

E



Canonical ensemble: averages

Consider a quantity that depends on the atomic positions and momenta:
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In equilibrium the average values of A is:
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Ensemble average

When you measure the quantity A in an experiment or MD simulation:

( ){ } ( ){ }( )∫
τ

τ 0

,1 tptrdtA ii Time average

Under equilibrium conditions temporal and ensemble averages 
are equal



Canonical ens.: equipartition of energy
Consider a variable that appears squared in the Hamiltonian:
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Equipartition of energy: Any degree of freedom that appears 
squared in the Hamiltonian contributes 1/2kT of energy
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