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Molecular Dynamics simulations
Introduction

•What is molecular dynamics (MD)? Examples of current research
•Why molecular dynamics?

Part 1: the theory behind molecular dynamics
•Basic ideas & algorithms
•Brief introduction to the physics necessary to run & understand MD

Part 2: total energy and force calculations
•Quantum mechanical origin of atomic interactions
•Inter-atomic potentials: “averaging electrons out”

Part 3: advanced techniques, mesodynamics, verification and validation
•MD in under isothermal and isobaric conditions
•Coarse grain approaches and dynamics with implicit degrees of freedom
•Before you perform production runs

•Tutorial to perform MD simulations using the nanoMATERIALS simulation 
tool at the nanoHUB
•Homework exercises



Various important ensembles
Microcanonical (NVE) Canonical (NVT) Isobaric/isothermal (NPT)
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Free energies (atomistic ↔ macroscopic thermodynamics)

Probability distributions



Canonical ens.: equipartition of energy
Consider a variable that appears squared in the Hamiltonian:
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Equipartition of energy: Any degree of freedom that appears 
squared in the Hamiltonian contributes 1/2kT of energy



Equipartition of energy: MD temperature
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In most cases c.m. motion is set to zero at time zero (constant of 
motion → it remains zero)
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Temperature is related to average kinetic energy. Instantaneous 
temperature:
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Fluctuations

Specific heat:

Compressibility:
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Fluctuations from equilibrium are also related to materials properties



Quantum effects

Interatomic distance
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When does classical mechanics for atoms stop working?

Temperature at which quantum effects kick in depends on frequency
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Statistical mechanics: further reading

•Kerson Huang: “Statistical Mechanics”

•Landau and Lifshitz: “Course of Theoretical Physics Volume 5: 
Statistical Physics”

•Balescu: “Equilibrium and nonequilibrium statistical 
mechanics”



How do we numerically integrate the 
equations of motion?

Initial conditions
[ri(0), vi(0)]

Calculate forces at current 
time [Fi(t)] from ri(t)

Integrate equations of motion 
r(t) → r(t+Δt)
v(t) → v(t+Δt)

t→t+Δt

Save properties

Done?

End
Y

No

Output files



Integrating the equations of motion
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Verlet algorithm: Taylor expansion of positions with time
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Verlet algorithm: various equivalent 
formulations

Velocity Verlet:

Leap-Frog Verlet:
( ) ttvttrttr iii Δ+⎟

⎠
⎞

⎜
⎝
⎛ Δ−=⎟

⎠
⎞

⎜
⎝
⎛ Δ+

2
1

2
1

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ++=Δ+ ttF

m
tvttv i

i
ii 2

11

Position:
Velocity:

( ) ( )

( ) ( )

( ) ( ) tttFttpttp

t
m

ttp
trttr

ttFtpttp

iii

i

i

ii

iii

ΔΔ++⎟
⎠
⎞

⎜
⎝
⎛ Δ+=Δ+

Δ
⎟
⎠
⎞

⎜
⎝
⎛ Δ+

+=Δ+

Δ+=⎟
⎠
⎞

⎜
⎝
⎛ Δ+

2
1

2
1

2
1

2
1

2
1

Calculate force

Advance p half step

Advance r full step 
(with p half step ahead)

Advance p half step 
(with F at t+Δt)

time



Verlet algorithm: features and 
advantages

•Exactly time reversible
•If velocities are reversed at a given time the algorithm 
traces back its steps

•Symplectic
•Conserves volume in phase space (as Hamiltonian 
dynamics does)

•No long-term energy drifts
•The trajectory stays very close to the constant energy 
hypersurface in phase space

( )NVEkS ,,logΩ=Remember:
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Part 1: the theory behind molecular dynamics
•Basic ideas & algorithms
•Brief introduction to the physics necessary to run & understand MD

Part 2: total energy and force calculations
•Quantum mechanical origin of atomic interactions
•Inter-atomic potentials: “averaging electrons out”

Part 3: advanced techniques, mesodynamics, verification and validation
•MD in under isothermal and isobaric conditions
•Coarse grain approaches and dynamics with implicit degrees of freedom
•Before you perform production runs

•Tutorial to perform MD simulations using the nanoMATERIALS simulation 
tool at the nanoHUB
•Homework exercises



How do we calculate atomic forces? 

Initial conditions
[ri(0), vi(0)]

Calculate forces at current 
time [Fi(t)] from ri(t)

Integrate equations of motion 
r(t) → r(t+Δt)
v(t) → v(t+Δt)

t→t+Δt

Save properties

Done?

End
Y

No

Output files



The simplest molecule: 
H2

+
proton

electron (e-)

proton

Molecular wave function as linear combination of atomic orbitals (LCAO)
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•K.E. not so good
•P.E. good
•Anti-bonding

•K.E. good
•P.E. not so good
•Bonding
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Covalent and non-bond interactions

Inverse atomic distance
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H2

He2

Strong covalent bond

Very weak bond

IA VIIIA

H IIA IIIA IVA VA VIA VIIA He

Li Be B C N O F Ne

Na Mg IIIB IVB VB VIB VIIB VIII VIII VIII IB IIB Al Si P S Cl Ar

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr



How can we compute interatomic potential?

•Ab initio electronic structure methods
•Hartree Fock, Density Functional Theory
•Quantum Monte Carlo
•Very accurate but computationally intensive 
(applicable to small systems – 100s-1000s atoms)

•Interatomic potentials:

{ }( )irV

Parameterized to describe specific materials
•Ab initio data
•Experiments
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