Chpt 5: Imperfections in Solids

ISSUES TO ADDRESS...

- What types of defects arise in solids? Describe them.
- Can the number and type of defects be varied and controlled?
- · How do defects affect material properties?
- Are defects undesirable?

Given masses or atomic weights of two or more elements in an alloy, calculate weight or atomic percentages.

MSE

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004,2006-08

Types of Imperfections

- Vacancy atoms
- Interstitial atoms
- Substitutional atoms

Point defects

• Dislocations
Edges, Screws, Mixed

Line defects

- Grain Boundaries
 - **Boundaries** Planar defects
- Stacking Faults
- Anti-Phase and Twin Boundaries

We need to describe them and understand their effects.

MSE

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004,2006-08

Lattice Defects

The concept of a perfect lattice is adequate for explaining *structure-insensitive* properties (esp. for metals).

But, to understand *structure-sensitive* properties, it is necessary to consider numerous lattice defects.

Practically all mechanical properties are structure-sensitive properties.

(almost) structure-insensitive	structure-sensitive
elastic constants	Electrical conductivity
Melting points	Semiconducting properties
density	Yield stress
Specific heat	Fracture strength
coefficient of thermal expansion	Creep strength

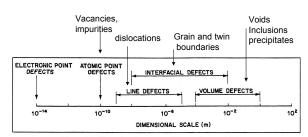
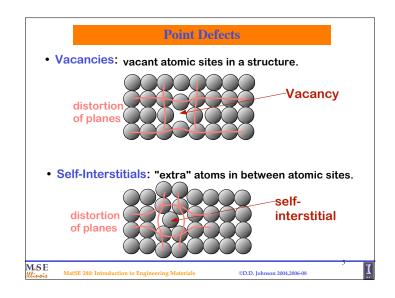
MSE

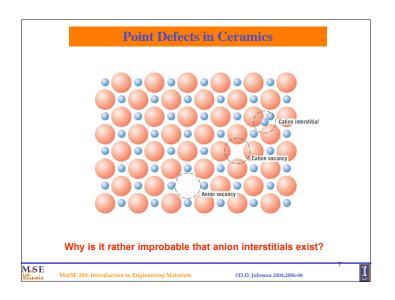
MatSE 280: Introduction to Engineering Materials

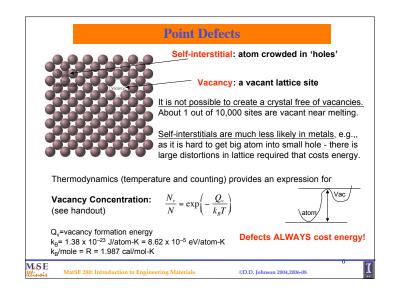
©D.D. Johnson 2004,2006-08

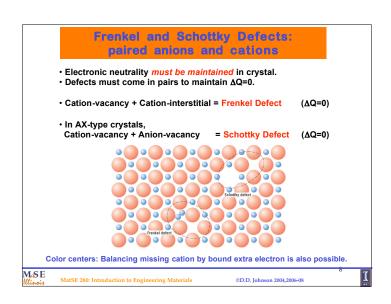
Length Scale of Imperfections

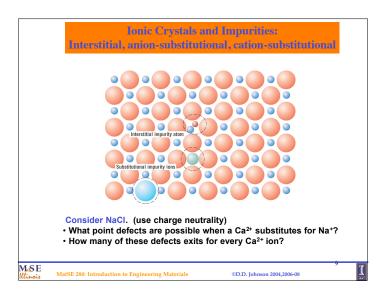
point, line, planar, and volumetric defects

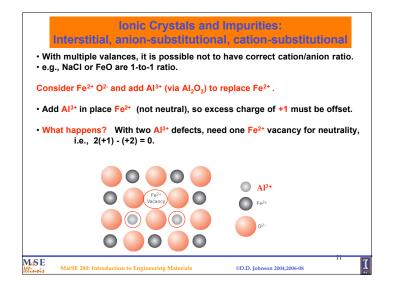



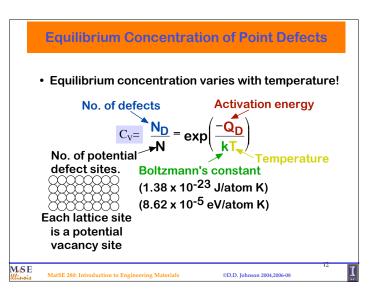

Figure 4.1 Dimensional ranges of different classes of defects.

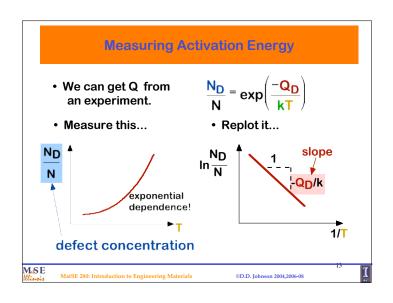

MSE

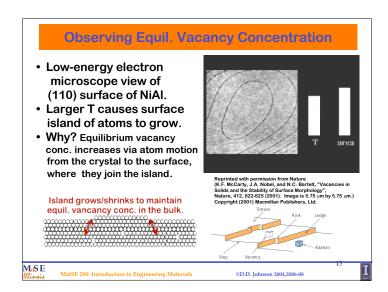

MatSE 280: Introduction to Engineering Materials


©D.D. Johnson 2004,2006-08

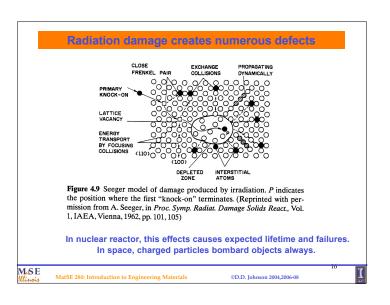


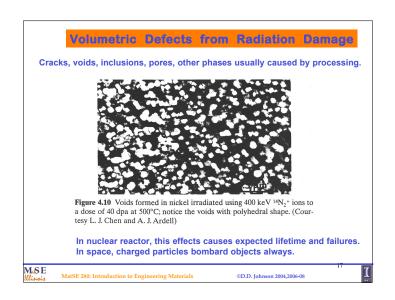


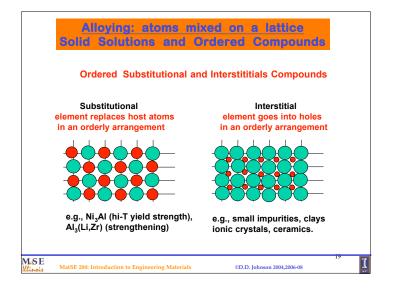


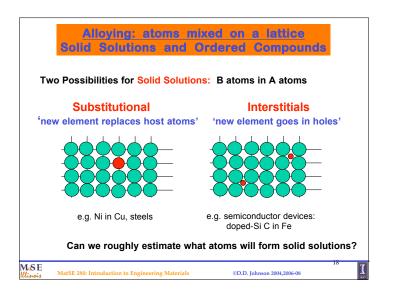


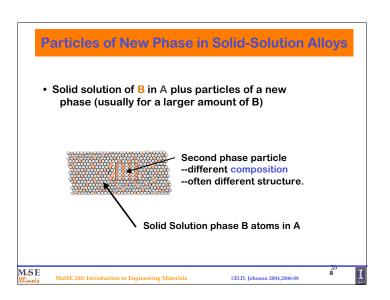
Interstitial, anion-salastitutional, entions substitutional Consider NaCI. (use charge neutrality) • What point defects are possible when a Ca²⁺ substitutes for Na⁺? • How many of these defects exits for every Ca²⁺ ion? • Replacement of Na⁺ by a Ca²⁺ introduces 1 excess positive (+1). AQ=0 only if • a single positive charge is eliminated. • a single negative charge is added. (Make a Na⁺ vacancy. -1) (Make a Cl⁻ interstitial, -1)

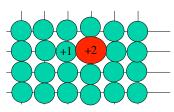





• Find the equil. # of vacancies in 1m 3 of Cu at 1000C. • Given: $\rho = 8.4 \text{ g/cm}^3$ $A_{Cu} = 63.5 \text{ g/mol}$ $Q_V = 0.9 \text{ eV/atom}$ $N_A = 6.02 \times 10^{23} \text{ atoms/mole}$ $C_V = \frac{N_D}{N} = \exp\left(\frac{-Q_D}{kT}\right) = 2.7 \cdot 10^{-4} + 10$


©D.D. Johnson 2004,2006-08


MatSE 280: Introduction to Engineering Materials



Hume-Rothery Rules for Alloys (atoms mixing on a lattice)

Will mixing 2 (or more) different types of atoms lead to a solid-solution phase?

Empirical observations have identified 4 major contributors through:

Atomic Size Factor, Crystal Structure, Electronegativity, Valences

MSE

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004,2006-08

Hume-Rothery Empirical Rules In Action

Example Applications Si-Ge semiconductor, Cu-Ni and Cu-Ag metal alloys. Is solid-solution favorable, or not?

Si-Ge Alloys

Rule 1: $r_{si} = 0.117$ nm and $r_{Ge} = 0.122$ nm.

Rule 4: Valency of Si and Ge are both 4.

 $\frac{r_{solute} - r_{solvent}}{x100\%}$ favorable √

Rule 2: Si and Ge have the diamond crystal structure. favorable √

Rule 3: E_{Si} = 1.90 and E_{Ge} = 2.01. Thus, DE%= 5.8% favorable √

Expect Si and Ge to form S.S. over wide composition range.

In fact, S.S. forms over entire composition at high temperature.

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004,2006-08

favorable √

Hume-Rothery Rules for Mixing

Empirical rules for substitutional solid-solution formation were identified from experiment that are not exact, but give an expectation of formation. Briefly,

1) Atomic Size Factor The 15% Rule

If "size difference" of elements are greater than ±15%, the lattice distortions (i.e. local lattice strain) are too big and solid-solution will not be favored.

DR%= $\frac{r_{\text{solute}} - r_{\text{solvent}}}{x_{\text{100}}} \times 100\%$ < ±15% will not disallow formation.

2) Crystal Structure Like elemental crystal structures are better

For appreciable solubility, the crystal structure for metals must be the same.

3) Electronegativity DE ~ 0 favors solid-solution.

The more electropositive one element and the more electronegative the other, then "intermetallic compounds" (order alloys) are more likely.

4) Valences Higher in lower alright. Lower in higher, it's a fight.

A metal will dissolve another metal of higher valency more than one of lower valency.

MSE

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004,2006-08

Hume-Rothery Empirical Rules In Action

Is solid-solution favorable, or not?

Cu-Ni Allovs

Rule 1: $r_{Cii} = 0.128$ nm and $r_{Ni} = 0.125$ nm.

 $\frac{r_{solute} - r_{solvent}}{x100\%} = 2.3\%$ favorable √

Rule 2: Ni and Cu have the FCC crystal structure. Rule 3: $E_{Cij} = 1.90$ and $E_{Ni} = 1.80$. Thus, DE%= -5.2%

Rule 4: Valency of Ni and Cu are both +2.

favorable √ favorable √

favorable √

Expect Ni and Cu forms S.S. over wide composition range.

At high T, it does (helpful processing info), but actually phase separates at low T due to energetics (quantum mechanics).

MSE

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004,2006-08

Hume-Rothery Empirical Rules In Action Is solid-solution favorable, or not? Cu-Ag Alloys Rule 1: $r_{Cu} = 0.128 \text{ nm}$ and $r_{Ag} = 0.144 \text{ nm}$. $\frac{r_{solute} - r_{solvent}}{x100\%}$ favorable √ Rule 2: Ag and Cu have the FCC crystal structure. favorable √ Rule 3: E_{CII} = 1.90 and E_{NI} = 1.80. Thus, DE%= -5.2% favorable √ Rule 4: Valency of Cu is +2 and Ag is +1. favorable Expect Ag and Cu have limited solubility. In fact, the Cu-Ag phase diagram (T vs. c) shows that a solubility of only 18% Ag can be achieved at high T in the Cu-rich alloys. MSE

©D.D. Johnson 2004,2006-08

MatSE 280: Introduction to Engineering Materials

Defining Composition of Alloy Amount of impurity (B) and host (A) in the system. Two descriptions: • Weight % $C_B = \frac{\text{mass of B}}{\text{total mass}} \times 100$ $C'_B = \frac{\text{\# atoms of B}}{\text{total \# atoms}} \times 100$ • Conversion between wt % and at% in an A-B alloy: $C_B = \frac{C'_B A_B}{C'_A A_A + C'_B A_B} \times 100$ $C'_B = \frac{C_B / A_B}{C_A / A_A + C_B / A_B}$ atomic weight of B mass of B = moles of B x AB atomic weight of A mass of A = moles of A x \overrightarrow{A} MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004,2006-08

Alloying A Surface: Sn on Cu · Low-energy electron microscope view of a (111) surface of Cu. · Sn islands move on surface and "alloy" Cu with Sn making "bronze" · Islands continually move into "unalloyed" regions and leave tiny bronze particles in their wake. · Eventually, the islands disappear. Reprinted with permission from: A.K. Schmid N.C. Bartelt, and R.Q. Hwang, "Alloying at Surfaces by the Migration of Reactive Two-Dimensional Islands", Science, Vol. 290, No. 5496, pp. 1561-64 (2000). Field of view is 1.5 µm and the temperature is 290K. "Bronze" MSE MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004,2006-08