CHAPTER 6: DIFFUSION IN SOLIDS

Gear from case-hardened steel (C diffusion)

ISSUES TO ADDRESS...

- · How does diffusion occur?
- · Why is it an important part of processing?
- How can the rate of diffusion be predicted for some simple cases?
- How does diffusion depend on structure and temperature?

MaSE Illinois

MatSE 280: Introduction to Engineering Materia

©D.D. Johnson 2004, 2006-08

Simple Diffusion

- · Glass tube filled with water.
- At time t = 0, add some drops of ink to one end of the tube.
- Measure the diffusion distance, x, over some time.
- · Compare the results with theory.

Diffusion- Steady and Non-Steady State

Diffusion - Mass transport by atomic motion

Mechanisms

- · Gases & Liquids random (Brownian) motion
- Solids vacancy diffusion or interstitial diffusion

MSE

MatSE 280: Introduction to Engineering Materials

Concentration Profiles

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

Concentration Profiles

©D.D. Johnson 2004, 2006-08

Interdiffusion: In alloys, atoms tend to migrate from regions of large concentration. This is a diffusion couple. Initially Adapted from Figs. 6.1 - 2. Callister 6e. 100%

Inter-diffusion

Diffusion and Temperature

• Diffusivity increases with T exponentially (so does Vacancy conc.).

$$D = D_o \exp\left(-\frac{Q_d}{RT}\right)$$

D = diffusion coefficient [m²/s]

 D_o = pre-exponential [m²/s] (see Table 6.2)

 Q_d = activation energy [J/mol or eV/atom]

R = gas constant [8.314 J/mol-K]

T = absolute temperature [K]

lote: $\ln D = \ln D_0 - \frac{Q_d}{R} \left(\frac{1}{T} \right)$ $\log D = \log D_0 - \frac{Q_d}{2.3R} \left(\frac{1}{T} \right)$

MSE

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

Example: Comparing Diffuse in Fe Is C in fcc Fe diffusing faster than C in bcc Fe? ිසි *T*(°C) (Table 6.2) 10-8 $D_0 = 2.3 \times 10^{-5} (m^2/2)$ Q=1.53 eV/atom D (m²/s) $T = 900 C D=5.9x10^{-12}(m^2/2)$ $D_0 = 6.2 \times 10^{-7} (m^2/2)$ Q=0.83 eV/atom T = 900 C D=1.7x10⁻¹⁰(m²/2) 1000 K/T • FCC Fe has both higher activation energy Q and D₀ (holes larger in FCC). • BCC and FCC phase exist over limited range of T (at varying %C). · Hence, at same T, BCC diffuses faster due to lower Q. • Cannot always have the phase that you want at the %C and T you want! which is why this is all important. MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08

Kirkendall Effect: What is $D_A > D_B$? • Kirkendall studied Mo markers in Cu-brass (i.e., fcc Cu₇₀Zn₃₀). • Symmetry is lost: Zn atoms move more readily in one direction (to the right) than Cu atoms move in the other (to the left). t = 0 Mo wire markers After diffusion · When diffusion is asymmetric, interface moves away markers, i.e., there is a net flow of atoms to the right past the markers. Analyzing movement of markers determines D_{7n} and D_{Cu} Kirkendall effect driven by vacancies, effective for T > 0.5 T... MSE MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08

vacancies are present from non-stoichiometric ratios of atoms.

0 Ni O²⁻ Ni Schottky defects 0 Ni Ni 0 Ni 0 Ni 0

• The two vacancies cannot accept neighbors because they have wrong charge, and ion diffusion needs 2nd neighbors with high barriers (activation energies).

MSE MatSE 280: Introduction to Engineering Materials

e.g., NiO

There are

©D.D. Johnson 2004, 2006-08

Diffusion in Compounds: Ionic Conductors

- · D's in an ionic compound are seldom comparable because of size, change and/or structural differences.
- Two sources of conduction: ion diffusion and via e- hopping from ions of variable valency, e.g., Fe²⁺ to Fe³⁺, in applied electric field.
- e.g., ionic
 - In NaCl at 1000 K, $D_{Na+} \sim 5D_{Cl-}$, whereas at 825 K $D_{Na+} \sim 50D_{Cl-}$!
 - This is primarily due to size $r_{Na+} = 1 \text{ A vs } r_{Cl-} = 1.8 \text{ A}.$
- e.g., oxides
 - In uranium oxide, $U^{4+}(O^{2-})_2$, at 1000 K (extrapolated), $D_O \sim 10^7 D_U$.
 - This is mostly due to charge, i.e. more energy to activate 4+ U ion.
 - Also, UO is not stoichiometric, having U3+ ions to give UO2-x, so that the anion vacancies significantly increase O2- mobility.
- e.g., solid-solutions of oxides (leads to defects, e.g., vacancies)
- If Fe₄ O (x=2.5-4% at 1500 K, 3Fe²⁺ -> 2Fe³⁺ + vac.) is dissolved in MgO under reducing conditions, then Mg²⁺ diffusion increases.
- If MαF_a is dissolved in LiF (2Li⁺ -> Mα²⁺ + vac.), then Li⁺ diffusion increases. All due to additional vacancies.

MSE

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

Example: solid-oxide fuel cell (SOFC) · SOFC is made up of four layers, three of which are ceramics (hence the name). · A single cell consisting of these four layers stacked together is only a few mm thick. Need to stack many, many together to have larger DC current. Overall: $H_2 + 1/2O_2 \rightarrow H_2O$ Electrolyte $H_2 \rightarrow 2H^+ + 2e^ O^{2-} + 2H^{+} + 2e^{-} \rightarrow H_{2}O$ Image: S. Haile's SOFC (2004 best): Thin-film of Sm-doped Ceria electrolyte (CeO $_2$, i.e. $Sm_xCe_{1-x}O_{2-x/2}$) and BSCF cathode (Perovskite $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3.4}$) show high power densities – over W/cm² at 600 C – with humidified H₂ as the fuel and air at the cathode. MatSE 280: Introduction to Engineering Materials ©D.D. Johnson 2004, 2006-08

Ionic Conduction: related to fuel cells

- Molten salts and aqueous electrolytes conduct charge when placed in electric field, +q and -q move in opposite directions.
- The same occurs in solids although at much slower rate.
 - Each ion has charge of Ze (e = 1.6×10^{-19} amp*sec), so ion movement induces ionic conduction
 - Conductivity $\sigma = n\mu Ze$ is related to mobility, μ , which is related to D via the Einstein equations: $\mu = ZeD / k_BT$

$$\sigma_{ionic} = \frac{nZ^2 e^2}{k_B T} D = \frac{nZ^2 e^2}{k_B T} D_o e^{-Q/RT}$$

 $\log_{10}\sigma_{i_{\rm min}} \sim \ln\!\left(\frac{nZ^2e^2}{k_BT}D_o\right) - \frac{\mathcal{Q}}{2.3RT} \quad \mbox{So, electrical conduction can be used determine diffusion data in ionic solids.}$

e.g., What conductivity results by Ca2+ diffusion in CaO at 2000 K?

• CaO has NaCl structure with a= 4.81 A, with D(2000 K)~10⁻¹⁴m²/s, and Z=2.

$$n_{Cu^{2s}} = \frac{4}{cell} \frac{cell}{(4.81x10^{-10} m)^3} = 3.59x10^{28} / m^3 \qquad \sigma = \frac{nZ^2 e^2}{k_B T} D \sim \frac{1.3x10^{-5}}{ohm - cm}$$

ohm – cm

MSE

MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08

Summary: Structure and Diffusion

Diffusion FASTER for... Diffusion SLOWER for...

• open crystal structures • close-packed structures

• lower melting T materials • higher melting T materials

materials w/secondary bonding
 materials w/covalent bonding

• smaller diffusing atoms • larger diffusing atoms

• cations • anions

• lower density materials • higher density materials

M.SE
|| MatSE 280: Introduction to Engineering Materials

©D.D. Johnson 2004, 2006-08