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• Since the source and drain regions are very 
good conductors it is the resistance of the 
channel region that limits the current and 
determines how much current will flow through 
the device when voltage is applied. Please do 
note that as the devices are getting smaller the 
parasitic resistances in the contacts become 
important compared to the channel resistance 
but that’s something we can ignore to start with.

• We are interested in the current that flows from 
Source to Drain,    (perpendicular to the cross 
section of the channel). In the absence of good 
fabrication, leakage current (in the z direction) 
can exist in the insulator due to VG. This current 
increases as the insulator thickness is reduced 
and is problematic for nano-scale FET’s.

• Denote the channel length 
as ‘L’
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• There are two types of current-voltage characteristics: One is     as a function of drain
voltage when a constant gate voltage is applied. The other is  as a function of gate voltage 

when a constant drain voltage is applied. We are mostly interested in the first one.
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What is the physics behind these curves?
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Transistor: I vs. V curves
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How far will transistor scaling go?
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How do we understand the I-V 
characteristics?

• Begin by understanding the band 
diagram which describes the energy 
levels in the device e.g. in silicon. (See 
right)
• But how do we know that these energy 
levels form bands and where they are?
• Experimentally, filled levels are 
determined from Photoemission 
Spectroscopy (PES)
S + hν S+ + e- (hv should be big 
enough to knock out an electron; 
typically hν > 5eV for semiconductors)
• Empty levels determined from Inverse 
Photoemission Spectroscopy (IPE)
S + e S + hν
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Fermi Function: f0(E) = 1/ (e E / kBT + 1)
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• Apply a positive gate voltage and 
band energy levels move down.

Fermi energy (or electrochemical potential) is held fixed by source and 
drain reservoirs

• Apply a negative gate voltage and 
band energy levels move up.
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• V+, the positive bias 
activation voltage, depends 
on how far the Fermi energy 
is from the conduction band

• V-, the negative bias 
activation voltage, depends 
on how far the Fermi energy 
is from the valence band

VG
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What if we had a carbon nano-tube or a hydrogen molecule?  Answer: 
Different energy levels but same basic story.
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Peaks occur where EF crosses 
an energy level due to an 

applied VG bias
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