ECE 495N
Fundamentals of Nanoelectronics
Fall 2008
Instructor: Supriyo Datta
Purdue University

Lecture: 30
Title: Diffusive and Coherence Transport
Date: November 12, 2008

Video Lectures posted at:
https://www.nanohub.org/resources/5346/

Class notes taken by: Panagopoulos Georgios
Purdue University
Diffusive and Coherent Transport

Lecture 30

Nov. 12, 2008

\[I = \frac{q}{h} \int dE \cdot \pi D \mu \left(f_1 - f_2 \right) \]

\[N = \int dE \frac{D}{\epsilon} \left(\frac{1}{f_1} + \frac{1}{f_2} \right) \]

\[I^+ = \frac{q}{h} M \cdot q V \quad \text{ballistic transport} \]

\[\frac{dI^+}{dx} = - \frac{I}{\lambda} \quad \Rightarrow \quad \frac{dI^+}{dx} = - \frac{I}{\lambda} = \frac{dI^-}{dx} \]

\[\frac{I}{V} = \frac{q^2}{h} \frac{M \lambda}{L + \lambda} \quad \text{(ballistic conductance)} \]
So the current is:

\[I = \frac{q}{h} \int dE \cdot \pi D \frac{1}{L + \lambda} (f_1 - f_2) \]

\[N = \int dE \frac{D}{\varepsilon} (f_1 + f_2) \]

\[\frac{dI^+}{dx} = \frac{dI^-}{dx} = -\frac{I}{\lambda} \Rightarrow \frac{d}{dx} [I^+ + I^-] = -\frac{2I}{\lambda} \]

\[I^+ = q n^+ u \]

\[I^- = q n^- u \]

\[\Rightarrow \frac{d}{dx} \left[q (n^+ + n^-) u \right] = -\frac{2I}{\lambda} \Rightarrow q u \frac{dn}{dx} = -\frac{2I}{\lambda} \]

\[\Rightarrow I = -q \left(\frac{U_2}{2} \right) \frac{dn}{dx} \]

\[D \text{ (diffusion coefficient)} \]

\[\text{Standard Diffusion Equation} \]

\[I = -q D \frac{dn}{dx} \]

\[\frac{dI}{dx} \]

\[\frac{d\mu}{dE} \]

\[G \]

\[\text{measurement (it doesn't go to zero)} \]
If we look at the overall conductance it looks like:

\[G = \frac{q^2}{h} M \frac{\Delta}{L+\Delta} \]

\[\Rightarrow R = \frac{1}{G} = \frac{h}{q^2} \frac{1}{M} \left(1 + \frac{L}{\Delta}\right) \]

\[\text{Ballistic resistor} \]

this part follows Ohm's Law

Good contact means: large number of modes.
Electrons are also waves which means that there is interference.

Normally we don’t have to worry for the fluctuations because all of it interference washes out, either the jiggling around or the average.