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1D Schrödinger Equation, 
Dispersion Relation

00:03

• We’ve been talking about solutions to 1D 
Schrödinger equation. A simple example is 
the case of constant potential. For harder 
cases, we we’ll learn a numerical method 
that would help us to solve for the energy 
levels of a material with arbitrary potential. 
First we’ll consider the 1D case and then 
we’ll get into 3D.
• The simplest case is:

• The solutions to a differential equation 
with constant coefficients (like above) can 
be solved by plane waves:

• Substitution of this solution into the 
equation leads to an E-k relationship.
• (2) in (1) =>
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Vibrating String
06:19

• Schrödinger equation is a wave equation. 
A common example of a wave equation is 
the acoustic waves on a string. There the 
quantity that is used to describe the wave 
is the displacement of each point on a 
string from an equilibrium point at a 
particular time.

• The equation describing such waves is:

• Solutions can be written as: 

• Again by substituting the solution in the 
wave equation we can get the dispersion 
relation. (1) in  (2) =>

• You can see the analogy between the two 
wave equations.
• One point is in order and that is: there are 
times where people start from a dispersion 
relation and deduce form it a differential 
equation; reveres of what we’ve done here.
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Waves in a Box -
Allowed Values of k

12:25

• The next thing to understand is solving 
for the energy levels having more 
complicated potential functions. The first 
example that was presented was that of a 
particle in a box.

• Assuming that the potential is very high 
at the two ends, one can show that the 
wave function has to go to 0 at the two 
ends:

• This way we can have solutions like:

• This allows only certain values of k which 
leads to discreteness in the energy levels 
shown in the left figure. The reason is that 
the wavelength must be such that the wave 
could fit inside the box. (k is related to the 
wavelength by                    ) 
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Discrete Energy Levels
15:58

• What we saw last day was that for the wave 
that goes to 0 at the two ends we cannot use:

because this is never 0. Notice that there are two 
values of k for a given energy. We can use a 
superposition of solutions with k and –k to write 
the proper solution.

• We have:

• Since in this problem the wave has to go to 0 at 
x=0, we choose the “sinkx”. Further, the 
boundary condition at x=L requires:

• The corresponding energy also 
becomes quantized:

• This shows that whenever an 
electron is confined in a certain 
region, the allowed energy values 
become quantized.
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Particle in a Finite Box
18:50

• Suppose we have potential box like:

• We are trying to find a solution with a 
given E. A solution like 

will not satisfy the equation because we 
have two different values for the potential; 
hence two different values for k. To see this 
consider:

• In region b we can write the solution as:

• This is because we get two possible 
values of k for a given U from equation (1) 
so we can use a linear combination as a 
general solution.
• In regions b & c  we can write the solution 
as:

•If E<U2, then
Gives an imaginary value for k2 and we get 
a decaying exponential in region a & c:

• For region (c),  exp(γx) is not allowed 
because the wavefunction cannot go to 
infinity for large x. 
• For region (a), exp(-γx) is not allowed 
because the wavefunction cannot go to 
infinity for large negative x.
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Boundary Conditions 
25:34

• The solutions in the regions a, b and c 
need to match at the boundaries x=o and 
x=L.  Taking this requirement into account 
puts a restriction on the allowed values of 
constants A,B,C and D. We can use this 
restrictions to find the constants. These 
restrictions are called Boundary Conditions 
(BC’s).

• The first BC is that the wavefunction has 
to be continuous across the boundaries.
• The second BC is that the derivative of 
wavefunction has to be continuous across 
the boundaries.

• What we mean is that discontinuities…

are not allowed because then the 
Schrödinger equation will not be satisfied at 
the point of discontinuity. Same is true for 
the derivative of the wavefunction. The 
reason is that in each case there will be an 
unmatched delta function (infinite height) in 
the Schrödinger equation where all other 
entities are finite:

Note: if Ψis discontinuous, then dΨ/ dx is a 
delta function. If dΨ/ dx is discontinuous, 
then d^2Ψ/dx^2 is discontinuous. 
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Utilizing BC’s to Determine 
the Constants

27:58

•We can utilize BC’s as follows: 
• Continuity of Ψacross x=0 gives us 
one equation that relates A, B and D:

• Continuity of Ψacross x=L gives us 
one equation that relates A, B and C. 
Similarly, continuity if dΨ/dx gives us 
two equations at the two boundaries. 
One gets a set of equations that could 
be used to eliminate the unknown 
constants.

• We will not get into the details of this 
problem. Instead we’ll use a more 
convenient method of solving and that is 
the numerical method.
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Ψand Electron Density n
30:40

• In electronic devices we are interested in 
two things the most: electron density 
inside a device and current flow.
• If an electron has a wavefunction , the 
associated electron density is:
• For example take the potential well:

•The associated electron density would 
come from squaring the sin wave inside 
the box. (solid:Ψ &  dashed :n)

• Notice that for 1 electron inn the box, the 
shape of electron density n may indicate 
that there is a fraction of electron at each 
point. This is not right. The correct view is 
that to look at these fractional values as 
probabilistic values of finding the electron 
at each point.
• Notice for adding electrons in different 
states we have two ways to come up with 
n:

• The correct answer is the first one. With 
electrons what we have to add are the 
electron densities not the wavefunctions. 
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“n” , “I” and Equation 
of Continuity

39:40

• For an electron that has the wavefunction:

• Electron density is:

• Current can be written as (the reason comes later):

• (1) in (2) =>

• (1) in (3) =>

• Where did equation (3) come from? If one accepts (2), then (3) is the only consistent 
expression for current  “I” considering the fact that Ψhas to satisfy the Schrödinger equation. 
Accepting (2) and (3) will satisfy the continuity equation and since the equation of continuity 
is general true argument (3) must be the right choice for “I”.

This is a general argument and states that the electron density in a region cannot change 
over time unless the gradient of current is non-0 in  the region. Moreover, the amount of 
current leaving the region has to be equal to the rate of change of electron density.

( ) (3)  
2

*
*

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

dx
d

dx
d

m
iqI ψψψψh

(2) *ΨΨ=n
( ) (1)  , /hiEtikxeAetx −=Ψ

2An =
( ) ( ) 222   

2
A

m
kqikAikA

m
iqI hh

−=−−−=

  )(
x
I

t
qn

∂
∂

−=
∂
−∂

Continuity Equation:


	Lecture 9: Schrödinger Equation
	1D Schrödinger Equation, Dispersion Relation
	Vibrating String              
	Waves in a Box - Allowed Values of k
	Discrete Energy Levels
	Particle in a Finite Box
	Boundary Conditions 
	Utilizing BC’s to Determine the Constants
	 Ψand Electron Density n
	“n” , “I” and Equation of Continuity

