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Time Independent 
Schrödinger Equation

00:03

• Today we want to talk about numerical solutions to Schrödinger equation.
• Consider the time dependent Schrödinger Equation

• If the potential is independent of x, then the 
solution to this equation can be written as:
• The only thing that remains to be done is the relationship between E and k called the 
dispersion relation which can be found by substituting the solution in the equation.
• Generally U(x) is a complicated function and analytical solutions are not achievable. There 
we have to rely in numerical solutions. 
• Notice that as long as U is independent of time, the time portion of the solution above is 
acceptable. So we can write the solution as: 
• Φ(x) is a complicated function that remains to be found.
• By substituting (1) in the Schrödinger equation we get the time independent Schrödinger 
equation:
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Time Independent 
Schrödinger Equation:



Overview - Eigenvalue
Problem

07:41

• What we want to do next is to solve: 

• The basic idea for any method of 
numerical solution to the differential 
equation is to turn it into a matrix equation. 
We’ll consider the finite difference method 
here. We’ll end up with:

• What we’ll learn for the rest of the class is 
how the finite difference method turns the 
differential equation into a matrix equation.
• Once one has a matrix equation like 
above,

The eigenvalues of the N by N matrix can 
be evaluated. There will be N eigenvalues 
and N eigenvectors.
• An example of eigenvalue problem:

• (1)=>

• To see this write the left hand side of (1) 
as:

• And subtract from it the matrix:
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Eigenvalue Problem 
Continued

17:09

• From

• The eigenvalues can be found using the 
argument that the matrix on the left must be 
singular. If it wasn’t then multiplying both 
sides by its inverse would result in a 0 
eigenvector which is not the correct answer.
• The matrix won’t have an inverse if its 
determinant is not 0. We have:

• To see hoe the procedure works, consider 
a special case:

• From (1 )=>

• Corresponding to each eigenvalue, there 
is an eigenvector:
• E = +1, then 

• E = +1, then

• Notice that if the eigenvectors are 
multiplied by an arbitrary scalar, the result is 
still an eigenvector.
• In general for an N by N matrix we’ll have 
N eigenvalues and N corresponding 
eigenvectors.
• For large value of N, Matlab can be used 
to find eigenvalues and eigenvectors:

D has the eigenvlaues of 
matrix H as its diagonal elements. V has 
normalized eigenvectors of H as its 
columns.
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Function Becomes a 
Column Vector

29:13

• How can we describe a function as a 
vector?
• We set up a lattice of discrete points 
and record the value of the function at 
each lattice point. Figure shows the 
discrete points. As it can be seen 
corresponding to each lattice point 
there is a value for the wave function. 
This can also be viewed as sampling of 
a continuous function into discrete 
values. Remember that in order to be 
able to perform a numerical method we 
have to a have a finite number of 
equations so that we can solve them.

• First create a lattice for the 1-D problem.

• Φ (x,t) therefore 
becomes a column 
vector telling the 
value of Φ at 
different points. i.e.
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Writing Potential Function 
U(x) as a Matrix

32:50

• Next question is:
• How do we convert the Hamiltonian 
operator into a matrix?

• First try writing the matrix for U(x) 
and then the matrix for

• The total Hamiltonian should be a 
sum of these two. For now 
concentrate on the easy part which is 
U(x)… (notice that a term is being 
neglected in the next equation at this 
point)
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• Consider 
• Since U(x) is a potential function, on a discrete 
lattice U would tell us the potential at ach lattice 
point, hence it will be diagonal:

• Writing above as a matrix equation:
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Differential Operator’s 
Discrete Representation 1

38:40

• What goes in the parenthesis is the 
discrete representation of the differential 
operator.
• So to turn the differential equation to a 
difference equation, the most important step 
is to write the second derivative as a 
difference expression. Let’s state the answer 
first and then derive it:

• Based on what we’ve done so far, we can 
write:
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At each particular point the Schrödinger 
equation (after dropping U) can be written 
as:

Now start from left and right everything at 
point n. The constants remain the same. 
For the wavefunction we right its value at 
that particular point. We will have:
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Differential Equation 
Becomes a Matrix Equation

41:57

• Accepting                                                      ,how can we write the matrix equation? 

• This will be a tridiagonal matrix:
• To see this consider for example
one of the equations from the 
series of equations in (1):

• If we’d want to also include the potential
to the matrix we can add its
corresponding values to the diagonal
elements:
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Boundary Conditions
46:10

• How do we determine the far elements on the anti-diagonal? In other words how do we 
handle the boundaries?

• Dropping the two terms is equivalent to setting 
the wavefunction to 0 at the two ends: 

• This would be appropriate for the particle in a 
box problem where the wavefunction is not allowed 
to penetrate outside the box.

• Next day we’ll start with the finite difference 
method.
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